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Abstract: Flexure hinges as the displacement guiding and amplifying mechanism or sensing component are widely used for 

micro-actuators and sensors. However, the existing flexure hinges, leaf-spring or notch type, cause serious stress concentration 

which severely weaken the fatigue life of compliance mechanism. Therefore, developing long fatigue life flexure hinges is very 

important for high working frequency actuators and sensors, such as fast-tool-servo. Corner-fillet leaf-spring type flexure hinge 

could provide large displacement with lower stress. Stiffness expressions of it with both fixed-fixed and fixed-guided boundary 

conditions are derived by using Castigliano’s theorem. The main influence factors for stress concentration are investigated and 

the formulas of stress concentration factor are obtained in terms of ratio of fillet radius to the minimum thickness. These 

analytical formulas have been verified by comparing with finite element analysis (FEA) results. Stress-life method is chosen to 

research the influence of fillet radius on fatigue life and the results indicate fillet radius can improve fatigue life of flexure hinge 

effectively. The proposed analytical solution is the fundamental of optimal design of a leaf-spring type flexure hinge based 

mechanism with fatigue life constraints. 
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1. Introduction 

Compliant mechanisms are widely used in micro actuator 

[1-3], micromanipulator [4], displacement amplifier [5], 

micro/nano positioning stages [6-9], accelerometers [10-12] 

and sensors [13, 14]. For micro/nano position stage, large 

stork and accurate displacement output, which make the 

displacement amplifying and guiding mechanisms become 

indispensable parts are two important goals to be achieved [15, 

16]. Better sensitivity and faster response also make 

compliance mechanisms important to the sensors. As the basic 

elements of compliance mechanisms, flexure hinges are 

mainly divided into two types, notch type and leaf-spring 

(shown in Figure 1). Notch type flexure hinge is a relative 

rigid part, with different shapes include conic-section [17, 18], 

elliptical arc [19], V-shaped [20] and so on. Offering higher 

rotational accuracy, notch type flexure hinges are utilized for 

angular output and displacement amplification. Leaf-spring 

type flexure hinges can deform as a whole part, which are 

commonly used for large stroke displacement guidance and 

sensing elements of sensors. 

However, stress concentration often occurs to both 

leaf-spring type flexure hinges and notch type flexure hinges, 

which produce high stress level when used for large 

displacement system. High stress level can lead to a failure of 

flexure hinge and even the entire compliant mechanisms under 

dynamic loading conditions [21, 22]. As actuators and sensors 

working at higher frequency, the fatigue problem becomes 

extremely important. Therefore, long fatigue life need to be 

considered in the flexure hinge design. Due to the large 

displacement output and its popular used in actuators and 

sensors, corner-fillet leaf-spring type flexure hinges(CFLSFH) 

are proposed for long fatigue life and large displacement in 

this paper, and the key work is to develop an analytic 

expression of the stiffness, and determine an optimal ratio of 

radium to the minimum thickness under fatigue life constraint. 
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Figure 1. Existing flexure hinges. 

Numerous studies have been made for the design of flexure 

hinges and compliant mechanism [23-27]. In those literatures, 

notch type flexure hinges are considered as fixed-free beams, 

and leaf-spring type flexure hinges are more easily found in 

fixed-fixed and fixed-guided condition and its design 

formulas are easily obtained for constant cross-section beam 

model. Although CFLSFHs are considered as leaf spring for 

simple design when fillet radius is small, the assumption is 

inaccuracy for large fillet radius CFLSFHs. CFLSFHs are 

cross-section varying beams, which is far more difficult to 

obtain the analytic solution of stiffness for either fixed-fixed 

or fixed-guided condition. To solve this problem, similar 

researches have been reported by using Castiliagno's theorem 

[28] and inverse conformal mapping [23]. Although the finite 

element method can analyze the stiffness and fatigue life of a 

flexure hinge efficiently, it cannot deal with the topology and 

size optimization simultaneously. Recently, the authors [29] 

presented a simultaneous optimal design method of topology 

and size under stiffness and frequency constraints using 

analytical solution of the equivalent stiffness and mass of 

flexure hinge. Therefore, the analytical solution of CFLSFHs 

should be figure out for the further optimizing of guiding 

mechanism under fatigue life constraints. 

In addition, how to design an appropriate fillet to reduce 

stress and ensure good flexibility and enough deformation 

area of CFLSFH is another problem need to be solved, which 

is illustrated in Figure 2 (a) and (b). Although the shape of 

CFLSFH is similar to corner fillet flexure hinge, their 

constraints are different. Corner fillet flexure hinges are 

commonly designed as cantilever beam [28, 30-31], which is 

shown in Figure 2 (c). So their achievements can't be used for 

the design of CFLSFH directly. In this paper, the static models 

of CFLSFH under fixed-guided and fixed-fixed constraint are 

built and their stiffness equations are deduced based on force 

method and Castiliagno's theorem. The curves of stiffness 

variation with dimensionless geometric parameters a (ratio of 

fillet radius to minimum thickness) and b (ratio of hinge 

length to minimum thickness) are plotted. The influence of 

main parameters on stress concentration factor is studied and 

expressions of stress concentration factors are fitted by using 

finite element analysis results. The stiffness equations and 

maximum stress predicted by stress concentration factor 

equations are verified with finite element simulations. Fatigue 

life of CFLSFH is researched and the case results indicate that 

fillet can improve the fatigue life effectively. 

 

Figure 2. (a) Fixed-fixed CFLSFH (b) Fixed-guided CFLSFH (c) Corner filleted flexure hinge. 

2. Stiffness of CFLSFH 

According to Castigliano’s theorem [32], the partial 

derivative of the strain energy of the elastomer with respect to 

load is equal to the corresponding displacement in the load 

direction, and it can be stated as: 

U

F

∂∆ =
∂

                      (1) 

where U  is strain energy, F is load, and ∆ is the 

corresponding displacement. 

When the external loading is applied to flexure hinges, the 

deformation in load direction can be calculated by Eq.(1). 

Generally, the leaf-spring type flexure hinge in actuators or 

sensors can be regarded as Euler–Bernoulli beams (the ratio of 

length to thickness is greater than 5), where shearing effects 

are ignored. Under this assumption, the flexible hinge has only 

bending deformation under the action of F , and the elastic 

strain energy is: 

2

2

M dx
U

EI
= ∫                   (2) 

where M is bending moment， E  is the elastic modulus， I

is the moment of inertia. 

The CFLSFH is shown in Figure 3, where l , w , t and r  

are the length, width, thickness and radius, respectively. Due 

to the corner-fillets, and thickness is varying with the 

coordinate X, which can be expressed as: 

2 2
0

0

2 2
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2( ( ) ) ,0

( ) ,

2( ( ) ) ,
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t x t r x l r
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   (3) 
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Figure 3. Geometric model of CFLSFH. 

2.1. Stiffness of Fixed-Guided CFLSFH 

The mechanics model of CFLSFH as guiding mechanism is 

shown in Figure 4, which has fixed-guided boundary 

conditions. 

 

Figure 4. Mechanical model of fixed-guided CFLSFH. 

 

Figure 5. Statically model of fixed-guided CFLSFH. 

The fixed-guided CFLSFH is statically indeterminate to the 

second degree and therefore two compatibility equations will 

be necessary for the solution. Choosing support reactions at B 

as redundant and considering the compatibility of 

displacement, the flexure hinge then becomes statically 

determinate and stable. The equivalent statically model is 

shown in Figure 5. 

The expression of bending moment along X  axis can be 

expressed as: 

[ ]( ) ( ), 0,
2

l
M x F x x l= − ∈            (4) 

The elastic strain energy is obtained with Eq. (2) and Eq. (8). 

The displacement  of guided end point under the action of

F is obtained: 

2

3

12 ( )
2

( )
fg

l

l
F x

U
dx

F Ewt x

−∂∆ = =
∂ ∫           (5) 

Using dimensionless parameters a and b , namely: 

0

0

/

/

a r t

b l t

=
 =

               (6) 

and submitting them into Eq.(5) yields: 

( )
( )( ) ( )( )

( )3

5/2 2

6arctan 4 1 3
2
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fg

a GF H
b a

Ew a a a a
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                    (7) 

where 

6 5 3 2 3 2 3 2 2 5 4 2 4

5 4 3 2 3 4 2 2 2 3 2 2 2

96 128 80 50 12 1 24 24 6 96 24 96

160 32 24 32 32 16 +32 72 8 4 10 32 4
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= + − − − − + − + − + −

= − + + + − + + − + + + + +
 

Finally, the guiding stiffness can be expressed as: 

fg∆
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(a) 

 

(b) 

Figure 6. Variation of stiffness Kfg of fixed-guided CFLSFH with 

dimensionless geometric parameters. (a) Variationof Kfg with a; (b) Variation 

of Kfg with b. 

Figure 6 shows variation of stiffness of fixed-guided 

CFLSFH with dimensionless geometric parameters. Figure 

6(a) indicates that the increase of value of a  strengthens the 

stiffness of fixed-guided CFLSFH, while the increase of value 

of b slows this trend down. Figure 6(b) demonstrates that the 

increase of value of b weakens the stiffness of CFLSFH, and 

the influence of a  to stiffness is ignorable when b  

increases to 40. 

2.2. Stiffness of Fixed-Fixed CFLSFH 

The mechanics model of fixed-fixed CFLSFH shown in 

Figure 7, is subjected to concentrated load F at the midpoint. 

 

Figure 7. Mechanical model of fixed-fixed CFLSFH. 

 

Figure 8. Statically model of fixed-fixed CFLSFH. 

The fixed-fixed CFLSFH is statically indeterminate to the 

third degree. Releasing redundant constrains at A and B and 

considering the compatibility of displacement, statically 

indeterminate problem can be converted to a statically 

determinate problem. The equivalent statically model is 

shown in Figure 8. 

The moment formulation along  axis direction can be 

expressed as: 

0

0

, 0,
2 8 2

( )

, ,
2 2 8 2
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x
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where 
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4 1(64 40 (4 1) )
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= + +
 

( )4 3 2 2

2 2

4 1 64 52 12 (2 1)(4 1)
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D a a a
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The deflection of CFLSFH based on Castigliano’s theorem 

and symmetry principle is shown in Eq. (10). 

X
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Computing the integral yields: 
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Stiffness of fixed-fixed CFLSFH can be thus expressed as: 
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(a) 

 

(b) 

Figure 9. Variation of stiffness with parameters for fixed-fixed CFLSFH. (a) 

Variation of Kff with parameter a; (b) Variation of Kff with parameter b. 

Variation of stiffness of fixed-fixed CFLSFH with 

parameter is plotted in Figure 9. Figure 9(a) indicates that 

increasing of the value of a  strengthens the stiffness of 

fixed-fixed CFLSFH, while increasing of the value of b

slows the increase trend of stiffness down. Figure 9(b) 

illustrates that increasing of the value of b weakens the 

stiffness of CFLSFH, and the influence of a on stiffness is 

neglectable when b increase to 40. 

3. Stress Concentration Factors 

The local material reduction of flexible hinge causes an 

increase of local stress, and the actual maximum stress of 

flexure hinge is much higher than the predictions of 

mechanics of materials equations. Stress concentration factor 

is used to characterize the increase of stress, which is defined 

as the ratio of actual maximum stress to normal maximum 

stress. Therefore, stress concentration factor can be used to 

estimate actual maximum stress of flexure hinge in the design 

of compliant mechanism, which can be expressed as [34]: 

max

nom

k
σ
σ

=                    (13) 

where maxσ  is actual maximum bending stress, k  denotes 

stress concentration factor and nomσ  is normal maximum 

stress. 

3.1. Stress Concentration Factor of Fixed-Guided CFLSFH 

For fixed-guided CFLSFH, stress concentration occurs in 

the connection positions of fillet with straight beam. The 

moment of fixed-guided CFLSFH in stress concentration part 

can be evaluated using Eq. (4), and the normal maximum 

stress can be expressed as: 

max 2
0

3 ( 2 ) 3 ( 2 )
=ff

nom

M F l r F b a
y

I Awt
σ − −= =      (14) 
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where maxy  represents the maximum distance to the neutral 

axis of the cross section, A  is the sectional area of minimum 

cross section. 

COMSOL software are used to do with FEA of flexure 

hinges. Ninety models are generated to provide abundant 

stress results for curve fitting. The main geometric parameters 

of flexure hinge are 1mm≤t≤2mm, 0.2≤a≤5, 40≤b≤100. The 

depth of modeled flexure hinges is 10mm with a Young’s 

modulus (E) of 71.7Gpa and a Poisson ratio (v) of 0.32. 

Hexahedral element is chosen to generate the model mesh, 

which is more accurate than triangle element. Each model is 

fixed on one end, and roller constraint is added on the other 

end. The load is applied in the roller end. The maximum stress 

of every analysis are recorded to calculate stress concentration 

factor. 

 

Figure 10. FEA model of fixed-guided. 

 

Figure 11. Stress concentration factor for fixed-guided CFLSFH. 

The FEA results confirm that the stress concentration 

factors are dominated by non-dimensional parameter a , 

while the parameter b has negligible effects on stress 

concentration factors, as Figure 11 shows. The empirical 

equation of guiding stress concentration factor
fg

k is obtained 

by fitting the results of FEA, as Eq.(15) shows. 

3.6
1.095

1
1.0765

fgk
a

 = +  + 
          (15) 

According to Figure 11 (b), stress concentration factors are 

sharply reduced with the increase of a . Stress concentration 

factors are approximately equal to 1, when a  is in the range 

of 2 to 3. Therefore, [2, 3] is the optimal range of a , 

synthetically considering the stiffness and stress 

concentration. 

3.2. Stress Concentration Factor of Fixed-Fixed CFLSFH 

The moment of fixed-fixed CFLSFH in stress concentration 

part can be obtained according to Eq. (9). The maximum 

nominal stress is expressed as: 

0
max 2

0

3 ( 4 ) 3 ( 4 )
=

44

ff
nom

F ct rM F c a
y

I Awt
σ − −= =      (16) 

The analysis models of fixed-fixed CFLSFH is built using 

the method similarly to section 3.1. The parameter of models 

are: 1mm≤t0≤2mm, w=15mm, 0.2≤a≤5, 40≤b≤80. Model of 

each design is meshed with hexahedral element. Each model is 

fixed on the both end, and a unit load is loaded at the midpoint 

of CFLSFH. FEA results for  is calculated using Eq. (13), 

based on maximum stress of FEA. 

 

Figure 12. FEA model of fixed-fixed CFLSFH. 

 

Figure 13. Stress concentration factor for fixed-fixed CFLSFH. 

The FEA results confirm that the stress concentration 

factors are dominated by non-dimensional parameter a , 

while the parameter b  has negligible effects on stress 

concentration factors, as Figure 13 shows. The following 

empirical equations for 
ff

k is obtained by fitting the FEA 

results. 

2.04
0.385

1
0.387

ff
k

a

 = +  + 
              (17) 

According to Figure 13 (b), stress concentration factors are 

sharply reduced with the increase of a . Stress concentration 

factors are approximately equal to 1, when a  is in the range 

of 2 to 3. 

k
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4. Verification 

The COMSOL software has been utilized to calculate 

stiffness and stress for the design cases listed in Table 1. The 

material parameters of models are: E=71.7GPa, µ=0.32, 

ρ=2810Kg/m
3
. The models built method is same to which is 

shown in Section 3. Hexahedral element is chosen for higher 

accuracy. The load F applied on flexure hinge is 1N. 

Table 2 and Table 3 comprises the FEA results and 

analytical results together with the design parameters of 

several CFLSFHs in different constrains. The analytical 

results and FEA results are in good agreement. Compared to 

FEA results, the maximum errors of stiffness is 2.32%, and the 

maximum errors of stress is 1.44%. 

Table 1. Geometric parameters of CFLSFHs. 

Case NO. 
Fixed-guided CFLSFH Fixed-fixed CFLSFH 

l (mm) r(mm) t(mm) w(mm) l(mm) r(mm) t(mm) w(mm) 

1 40 2 2 15 80 2 2 15 

2 40 4 2 15 80 4 2 15 

3 40 6 2 15 80 6 2 15 

4 40 8 2 15 80 8 2 15 

Table 2. Results of Fixed-guided CFLSFHs. 

Case NO. 
Stiffness Stress 

Analytical(N/m) FEA(N/m) Error (%) Eqs.(106N/ m2) FEA(106N/ m2) Error (%) 

1 155619 152439 2.09 1.932 1.96 -1.44 

2 197152 194932 1.14 1.639 1.64 -0.08 

3 260725 258398 0.90 1.417 1.40 1.18 

4 358865 354610 1.20 1.208 1.20 0.87 

Table 3. Results of Fixed-fixed CFLSFHs. 

Case NO. 
Stiffness Stress 

Analytical (N/m) FEA(N/m) Error (%) Eqs.(105N/m2) FEA(105N/m2) Error (%) 

1 289032 282486 -2.32 9.92 9.80 1.23 

2 323697 317460 -1.96 8.81 8.72 0.01 

3 367962 361011 -1.93 8.10 7.91 0.02 

4 422918 414938 -1.92 7.47 7.33 0.02 

 

5. Fatigue Life of CFLSFH 

Fatigue can lead to premature failure of flexure hinge, 

especially in high frequency and high speed operational 

situations. Therefore fatigue life is important performance for 

the vulnerable flexure hinges. The fillet can reduce the stress of 

CFLSFH and prolong its fatigue life. Stress-life method is used 

to research the relationship between fillet radius and fatigue life. 

The fatigue strength of smooth test specimen for Aluminum 

alloys can be estimate by the following equation [34]. 

0.4 325

130 325

U U
e

U

S S MPa
S

MPa S MPa

≤
=  ≥

          (18) 

where US is the ultimate tensile strength and eS is the fatigue 

strength of material. 

The fatigue strength of flexure hinge with no mean stress 

which account for notch effect, surface finish and preload type, 

is defined as 

e a b c eS k k k S′ =                  (19) 

where ak  is the fatigue stress concentration factor, bk is the 

surface condition modification factor, and ck is load 

modification factor. 

The fatigue stress concentration factor can be calculated as 

11
1

1 /

t

a P

k

k A r

−
= +

+
              (20) 

where tk  is stress concentration factor, PA  is material 

constants, for Aluminum alloys 0.66PA ≈ , and r  is the 

radius of curvature. 

The surface condition modification factor can be estimated 

according the surface roughness, which is proposed in [21]. 

The load factor is defined as 

1

0.85

0.59

c

bending

k axial

torsion


= 



            (21) 

The fatigue safety factor is calculated as 

e
D

m

S
S

σ
′

=                 (22) 

where mσ  is normal stress. 

Then the fatigue safety factor of CFLSFH in fixed-guided 

and fixed-fixed condition can be expressed as 
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ff
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for fixed guided CFLSFH

k
F b a

A r
S

k k S A
for fixed fixed CFLSFH

k
F c a

A r

 −  − − +   +  = 
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  −
 − +  +  

 (23) 

A case is taken to illustrate the influence of fillet radius to 

fatigue life of CFLSFH. Consider a given CFLSFH (t0=4mm, 

w=15mm) is undergoing a cycling load F=±100N. The 

compliance mechanism is made of 7075 T6 and manufactured 

by CNC milling process (surface roughness R=6.3µm). The 

ultimate tensile strength is larger than 325MPa, therefore eS  

is 130MPa. bk  can be estimated according surface roughness 

and is 0.87. Figure 14 shows that the increase of fillet radius 

can improve the fatigue life of flexure hinge effectively. In the 

meantime, boundary condition have obvious influence on the 

fatigue life of flexure hinge. 

 

(a) Fixed-guided condition 

 

(b) Fixed-Fixed condition 

Figure 14. Fatigue safety factor of CFLSFHs. 

6. Conclusions 

This paper proposes analytic solutions of stiffness of 

CFLSFH in fixed-fixed and fixed-guided boundary condition, 

which are widely used in micro-position stages and sensors. 

The stiffness equations are derived based on Castigliano’s 

theorem and force method. Stress concentration factors of 

CFLSFHs are investigated according to the analytical results 

of COMSOL software. Parameter a  (ratio of radius to 

minimum thickness) is verified to be the main influence factor 

to stress concentration and equations of stress concentration 

factors are fitted taking a  as fitted variable. By confirming 

stiffness equations and equations of stress concentration 

factors with COMSOL software, the stiffness errors are less 

than 3%, and stress errors are less than 2%. Case results 

indicate that fillet radius can improve fatigue life of CFLSFH 

effectively. Analytical results of CFLSFHs can be used for the 

design and further optimization of CFLSFH based 

mechanism. 
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