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Abstract: To obtain the topology optimization algorithm of continuum structure which can effectively identify the effective 

constraints and quickly converge, based on the original Ratio-Extremum algorithm theory based on truss structure optimization, 

the emitter algorithm theory is introduced into the topology optimization of continuum structure. Firstly, taking pseudo density as 

design variables, mathematical model of the minimization mass with constraints of nodal displacements and element stresses is 

constructed. Secondly, according to essential extremum conditions of Dual objective function, iterative optimization direction 

and analytical step-size of constraint multipliers are derived. And, according to essential extremum conditions of Generalized 

Lagrange function, iterative optimization direction and analytical step-size of pseudo densities are derived. Analytical step-sizes 

are used to avoid one-dimensional optimization and then the calculation quantity of iterative optimization can be decreased. 

Thirdly, first-order partial derivatives of nodal displacement and element equivalent stress constraints with respect to pseudo 

densities are given. After that, by using self-compiled MATLAB program for continuum structure analysis, partial derivative 

calculation and optimization iteration, 4 optimization examples of different beam structures are used to show the changes of 

active nodal displacement and element equivalent stress constraints, and structural mass in the optimization iteration process, and 

to show the effectiveness of Ratio-Extremum algorithm in topology optimization of continuum structures. 

Keywords: Continuum Structure, Topology Optimization, Ratio-Extremum Algorithm, Optimization Direction, Step-size, 

Active Constraint Identification 

 

1. Introduction 

Topology optimization is a very effective method to design 

structural shapes under specified loads, and performance 

constraints and boundary conditions, and to achieve better 

performance index [1]. In which, variable-density method [2] 

was earlier proposed in topology optimization, and has been 

continuously improved and developed with much more efforts 

of many researchers [3]. 

In early development of variable-density method, the 

continuum shape optimization was discussed by Bendsøe [4]. 

With that, the material interpolation schemes were used to 

solve the topology optimization of composite material [5]. 

And then, the process of variable-density topology 

optimization could be visualized by mathematical tools [6]. 

The visualization technique provides a good idea for 

engineering design. 

In subsequent studies, some shortcomings of 

variable-density method have been greatly improved. The 

stability problem was introduced into traditional 

variable-density method with adding stability constraints to 
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solve the problem of topology optimization by ZHAO [7] and 

ZHANG [8]. Smooth boundaries for irregular continuum 

structures were discussed by YU [9], LI [10] and LIU [11]. 

The boundary grids were used to fit a smooth curve or smooth 

surface at engineering practice. Weighted Pseudo densities 

were accelerated to approximate the 0/1 value in the 

optimization process by XU [12], DU [13] and YAN [14]. 

Thus, gray elements on the boundaries could be effectively 

simulated. And, the stability of topology optimization process 

and solving efficiency were improved. To achieve clear 

optimization boundaries without checkerboard phenomenon 

and mesh dependence, density gradient weighted function was 

used to automatically discriminate and weaken the filtering 

average effect of optimization boundary by LONG [15], LI 

[16] and ZHANG [17]. The model was post processed after 

topology optimization, and gray elements were filtered or 

suppressed to improve the solving efficiency by GAO [18], 

ZHANG [19] and DU [20]. Local quadratic programming on 

the basis of overall topology optimization was carried out by 

CHEN [21], LUO [22] and Namhee [23]. Isolated elements 

were deleted, and checkerboard elements were reformed to be 

more suitable to the engineering needs. A design space 

adjustment method without affecting the convergence of 

algorithm was proposed to solve the problems, such as large 

computation and material distribution in topology 

optimization, by YI [24] and ZHANG [25]. A multi-density 

method based on the homogenization method was discussed to 

realize the optimization design of variable-density lattice 

structures by LI [26] and LIAO [27]. 

Variable-density method was mainly improved with filtering 

algorithm or local optimization algorithm in post-processing. 

Total number of cycles was really reduced. Whereas, the 

calculation quantity of single cycle was increased. In the basis 

of optimization algorithm, the improvement on combining 

"optimization direction" and "step size" is still insufficient. 

Ratio-extremum method is a new optimization algorithm 

from truss structures, which designates the optimization 

direction and step-size according to essential extremum 

conditions of Lagrange function and Dual function [28]. In 

which, the step-size can be determined by analytic method 

[29], rather than one-dimension searching. And, it can be also 

used to solve the optimization problem with fundamental 

frequency constraints [30]. The effectiveness is verified by 

optimization examples of truss structures. 

Based on structural similarity, Ratio-extremum theory is to 

firstly extend to topology optimization of continuum 

structures, with pseudo-densities taken as design variables. 

Considering the problem of structural mass minimization with 

the constraints of nodal 1 displacements and element 

equivalent stresses, the optimization direction and step-size 

will be discussed by essential extremum conditions of 

Lagrange and Dual functions. The key points to realize this 

algorithm are first-order partial derivatives of nodal 

displacement and element equivalent stress constraints. And, 

the derivatives will be present. Then, by using self-compiled 

MATLAB program of structural analysis, derivative 

calculation and optimization iteration, the effectiveness is to 

be showed by optimization examples of four different beam 

structures. 

2. Topology Optimization Model 

Taking pseudo-density x as design variable, under the 

constraints of nodal displacements and stresses, and upper and 

lower limits of design variables, the continuum topology 

optimization problem of mass minimization can be expressed as: 
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Wherein, x= [x1, x2,..., xn, …, xN]
T
 constitutes the vector of 

design variables, and superscript T is the symbol of vector 

transposition. R
N
 represents N-dimensional real number space. 

M(x) expresses the objective function of minimizing structural 

mass. ρn is physical density of n-th element. vn is the volume. 

gui(x) represents the displacement constraint of i-th node, and 

ui is the displacement component, and [ui] is the allowable 

value, and I is total number of nodal displacement constraints. 

gσn(x) represents the stress constraint of n-th element, and σn is 

the element stress, and [σn] is the allowable value, and N is 

total number of elements. gxk(x) is set as lower limit constraint 

of k-th design variable, and gxj(x) is set as upper limit 

constraint of j-th design variable. 

3. Topology Optimization Algorithm 

3.1. Optimization Principle 

From the objective function of Equation (1) and the 

constraint functions of nodal displacements, element stresses 

and design variables, Generalized Lagrange function can be 

expressed as: 
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Wherein, λui is the constraint multiplier corresponding to 

the displacement of i-th node, and λσn is the constraint 

multiplier corresponding to the stress of n-th element, and λxk 

is the constraint multiplier corresponding to lower limit of 

k-th design variable, and λxj is the constraint multiplier 

corresponding to upper limit of j-th design variable, and λ 

represents the vector of constraint multipliers. The essential 
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extremum condition of Equation (2) is: 

0* *L ,∇ ( ) =x λ                   (3) 

Dual programming problem of Equation (1) can be 

expressed as: 
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The essential extremum condition of Equation (4) is: 

x
0

x λ λ
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                (5) 

That means, at optimal point x*, Equation (3) holds and active 

constraints are on the critical, the corresponding multipliers are 

non-negative. And, inactive constraints are within their bounds, 

the corresponding multipliers should be zero. 

3.2. Algorithm Idea of Ratio-extremum 

Firstly, a searching optimization is implemented in multiplier 

space. That is, the searching direction of constraint multipliers is 

determined by the second term at left end of Equation (5), and 

its step-size can be determined by Equation (5). If the multipliers 

calculated is less than or equal to zero, just make them being 

zero. Secondly, another searching optimization is implemented 

in design-variable space. That is, the searching direction of 

design variables is determined by Equation (3), and its step-size 

can be determined by partial derivative of Generalized Lagrange 

function with respect to the step-size. 

Repeat the above two steps to convergence. If the values of 

design variables are close to the lower bounds, the 

corresponding elements can be deleted to obtain the topology 

optimization result. 

3.3. Iteration of Constraint Multipliers 

The iterative solution of constraint multipliers can be 

expressed as: 

( ) ( ) ( ) ( )1
λλ λ d

k k k kβ+ = −                (6) 

Wherein, dλ represents the searching direction of constraint 

multipliers. And, β is the step-size. Superscript (k) indicates 

that the variable is the quantity of k-th step. 

By the second term at left end of Equation (5), the 

searching direction of constraint multipliers can be 

determined, and the expression is as follows: 

T

λ 1 2d l Lg g g g= − − − −  ⋯ ⋯          (7) 

Wherein, gl represents the l-th constraint. And L is total 

number of constraints. 

The step-size of constraint multipliers can be determined 

by Equation (5), that is: 

T
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Wherein, Gx represents Jacobian matrix of constraints with 

respect to design variables. G expresses Jacobian matrix of 

objective function and constraints with respect to design 

variables [29]. 

In the iterative process of Equation (6), if one of constraint 

multipliers is positive, it indicates that the constraint is an 

active constraint. And, if one of constraint multipliers is 

negative, it means that the constraint does not work 

temporarily, and its multiplier should be zero. 

3.4. Iteration of Pseudo-densities 

The iterative solution of pseudo-densities can be expressed 

as: 

( ) ( ) ( )
xx x d

k k kk α= −（ + 1 ）              (9) 

Wherein, dx represents the searching direction of 

pseudo-densities. And, α is the step-size. 

Multiply the square of pseudo density xm (m=1, 2, …, N) 

by Equation (3). And then, apply the solution formula of 

quadratic equation to determine the searching direction as 

follows: 
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Among them, K expresses overall stiffness matrix. F is 

nodal load vector. And, ei represents the row vector in 

which the i-th component is 1 and the others are zero. And, 

σneqv is equivalent stress of n-th element. S is the stress 



4 Ou Disheng et al.:  Research on Ratio-Extremum Algorithm for Topology Optimization of Continuum  

Structures Including Active Constraint Identification 

 

matrix. 

If the value in the square root of Equation (10) is negative, 

the pseudo-density can be set as its lower limit. So, the 

searching direction should be: 

xn nd x=                    (15) 

By applying first-order partial derivative of Generalized 

Lagrange function with respect to the step-size of 

pseudo-densities, Equation (9) can be used to determine the 

step-size as: 

( )T
L d

L d
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If one of pseudo-densities exceeds its lower limit, just set 

the corresponding term of the vectors to zero. 

4. Numerical Examples 

The programs of continuum structure analysis, partial 

derivative calculation and optimization iteration are 

compiled by MATLAB software, and the optimization 

results are presented by the grid graphs of black (1) and 

white (0). 

The basic conditions of four examples are as follows: one of 

continuum structures is divided into 40×20 elements, the 

length and width of each element are 0.4 unit length, the 

thickness is 0.001 unit length, and the density is 78×10
5
 unit 

density. The nodal displacements are less than or equal to 

0.003 unit length, and the element equivalent stresses are less 

than or equal to 126×10
6
 unit stress. The iterative termination 

condition is set as relative change rate of pseudo-densities is 

less than or equal to 1×10
-7

. The following figures only show 

the case that the iteration number is up to 200. 

The fixed nodes and loadings of four different beam 

structures are shown in Figure 1. In which, F is 10000 unit 

force, and F1, F2 and F3 are 3500 unit forces, respectively. The 

left figures of (a), (b), (c) and (d) in Figure 1 are the 

schematics of beam structures, and the right figures are the 

results of topology optimization. 

In order to verify whether the results meet the constraint 

and convergent conditions, Figure 2, Figure 3 and Figure 4 

show the changes of the maximum nodal displacements and 

element equivalent stresses that the performance constraints 

are active at final, as well as the masses of four different 

beam structures, respectively. In Figure 2 and Figure 3, the 

nodal displacements and element equivalent stresses being 

active at final present great changes in the iteration process. 

The phenomenon is caused by the active constraints 

switching to inactive ones. This indicates that the beam 

structures are unstable. When the curves change gently, the 

switching phenomenon does not appear, and the beam 

structures are stable. This means that the iteration of 

Equation (6) for constraint multipliers can effectively identify 

active constraints. 

 

(a) Cantilever beam of fixing left end and loading right corner 

 

(b) Cantilever beam of fixing left end and loading right center 

 

(c) Beam of fixing left end and supporting lower right corner with 3 loadings 

 

(d) Simply supported beam with 3 loadings 

Figure 1. Beam structures and optimization results. 

 

Figure 2. Active nodal displacements. 

 

Figure 3. Active element equivalent stresses. 
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Figure 4. Structural masses. 

By analyzing the iterative results, it presents that the 

maximum nodal displacements of four different beam 

structures converge to 0.003, and the maximum element 

equivalent stresses are all within 126×10
6
, which satisfy the 

conditions of displacement and stress constraints. 

After 40 iterations, the maximum nodal displacements and 

element equivalent stresses, and structural masses of beam 

structures (a), (b) and (d) in Figure 1 can tend to be stable. 

However, the ones of beam structure (c) just tend to be stable 

after 140 iterations. And, the objective function of mass can 

smoothly transition to convergence. This means that the 

iteration of Equation (9) for pseudo densities can converge 

quickly when the active constraints do not change. 

5. Conclusion 

According to the theory of Ratio-Extremum method for 

structural optimization and essential extremum conditions of 

optimization problem, this paper mainly discusses the 

searching direction and step-size of constraint multipliers and 

pseudo-densities by analytical method for continuum 

structures. Based on matrix displacement method of 

continuum structure analysis, the first-order partial 

derivatives of nodal displacement and element equivalent 

stress constraints with respect to pseudo-densities are given. 

By using self-written MATLAB for continuum structure 

analysis, partial derivative calculation and optimization 

iteration, the optimization examples of 4 different beam 

structures are used to show: the iteration of constraint 

multipliers can effectively identify whether the constraints 

are active or not. When the iteration converges, the active 

constraints reach to critical. The iteration of pseudo-densities 

can converge quickly when the active constraints do not 

change. 

After that, based on the existing research results, the 

following two research points will be carried out: 1. Further 

refine the structural grid to make the optimized structure 

smoother; 2. Extend the algorithm to 3D structure 

optimization to make it more in line with the Practical 

engineering application. Mesh refinement and 

three-dimensional structure lead to the increase of computing 

units, which means the increase of computing cost and 

overcoming the problem of small computer running memory.  
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