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Abstract: The paper devotes the formulation of the problem of optimizing the oncoming traffic and gives a description of the 

concept and control system that implements the navigation of ships in maneuvers. In nautical practice, the ship has been 

encountered in the special situations, such as: avoiding collision, maintaining the time arriving the pilot station, picking up pilot, 

berthing as schedules, sailing in confined water area... In order to solve this issue, the authors present their researches about the 

task of interception optimal time and the normal and degenerate problem; also they give the remarks about globally-optimal 

control and optimal control. Accordingly, the result is applied for ship control in maneuvering. 
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1. Introduction 

In nautical practice, the ship has been encountered in the 

special situations, such as: avoiding collision, maintaining 

the time arriving the pilot station, picking up pilot, berthing 

as schedules, sailing in confined water area... in order to 

solve these issues, we will formulate the problem of 

optimizing the oncoming traffic and give a description of the 

concept and control system that implements the navigation of 

ships in maneuvers. The optimization problems can be 

classified for which you are to minimize the transition time 

from the initial state to the final area relates to the tasks of 

the optimal time. In this section we formulate the problem 

precisely control the optimal time to be considered at a 

particular physical example. Most of this section is devoted 

to a discussion of the problem from a geometric point of 

view. We show that the time-optimal problem essentially 

reduces to finding [1, 4, 11, 12]: 

1) The first time at which the area of reachable states 

meets the area S; 

2) Control, which it carries out. 

2. The Task of Interception Optimal Time 

The vessel will be considered as a dynamic system with 

state ( )x t∗ , an exit ( )y t  and the control ( )u t , defined by 

the equations [2, 7, 11, 12]: 

 ( ) [ ( ), [ ( ), ]u(t)x t f x t t B x t t= +ɺ  (2.1) 

 y(t)=h[ ( )]x t                (2.2) 

Let's assume that 

 

( )  dimensional vector

( )  dimensional vector

( ) -  dimensional vector 

x t n

y t m

u t r

−
−    (2.3) 

Also that 

 0n r m≥ ≥ >                  (2.4) 

Thus, f - a n-dimensional vector function; B[x,t] - the 

matrix-function of the size n × r and h is a m-dimensional 

vector function. We will consider that components of a vector 

of control u(t) are limited on size by inequalities [11] 

 ( ) , 1,2,...,j ju t m j r≤ =           (2.5) 

Let ( )z t  - a vector with m components. We will agree to 

name a ( )z t  desirable exit. Let ( ) ( ) ( )e t y t z t= − - Error 
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vector. 

Let t0 - initial time and x(t0) - starting

system. 

It is required to find control, which: 

1) Satisfies to restrictions (2.5); 

2) Operates system in such a manner that

moment of time 

 ( )e T E∈     

Where E - some set subset from ; 

3) Minimises transition time T – t0. 

If the dynamic system [3, 7] described by

is completely observable, to everyone y(t) 

a unique status x(t). Hence, area S in space

defined parity: 

 { ( ) : ( ) [ ( )];y(T) Y}S x T y T h x T= = ∈

We use Pontryagin’s minimum principle

the systematized approach to the decision

optimum speed. Received results in the analytical

be used for numerical representation of decisions.

consider control, optimum on speed, for mobile

system is given. 

 

ij( ) [ ( ), ] [ (t),t] ( );

1, 2,...

or

( ) [ ( ), ] [ ( ), ] ( )

r

i i j

j

x t f x t t b x u t

i n

x t f x t t B x t t u t

= +

=

= +

∑ɺ

ɺ

Set smooth area S is defined by parities: 

 

[ , ] 0, 1,2,...,

or

[ , ] 0

vector with component g

g x t n

g x t

n

α = α = − β; β ≥ 1

=
− β 

Components  are limited

parity: 

 

( ) 1, 1, 2,...,  with all 

or

( )

ju t j r t

u t

≤ =

∈ Ω

Functional it is defined in a kind: 

 

0

0( )

T

t

J u dt T t= = −∫   

Where T - it is free. 

To find such control u(t), that it: 

- Satisfied to restrictions (2.10); 

mR

)(),...,(),( 21 tututu r
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starting state of dynamic 

that during the final 

             (2.6) 

by (2.1) and (2.2), 

) there corresponds 

space of statuses can be 

{ ( ) : ( ) [ ( )];y(T) Y}= = ∈     (2.7) 

principle [4, 13] to receive 

decision of problems on 

analytical form can 

decisions. We will 

mobile area St. The 

( ) [ ( ), ] [ (t),t] ( );

( ) [ ( ), ] [ ( ), ] ( )

i i jx t f x t t b x u t

x t f x t t B x t t u t











    (2.8) 

 

vector with component gα

= α = − β; β ≥ 1






    (2.9) 

limited on size by 

( ) 1, 1,2,...,  with all u t j r t





      (2.10) 

J u dt T t         (2.11) 

- Translated x(t0) systems (2.8)

- Minimised functional J(u). 

On the basis of a minimum 

to assert that there is (optimum)

corresponding to optimum control

trajectory x*(t). Existence p*(t) 

necessary, those components 

satisfied to the initial equations:

 

* * *
*

*

* * *
*

*

[ ( ), ( ), ( ), ]
( ) ;

( )

[ ( ), ( ), ( ), ]
( )

( )

k

k

k

k

H x t p t u t t
x t

p t

H x t p t u t t
p t

x t

∂=
∂

∂=
∂

ɺ

ɺ

3. Normal and Degenerate

3.1. Normal Task 

Suppose [1, 6, 15, 16] that

countable set of points t1j, t2j, t3j

 
*

j 0[ , ], 1, 2,3,...; 1, 2,...,t t T j rγ ∈ γ = =

Such that 

 
* * *

ij

1

( ) [ ( ), ] ( )

n

j i

i

q t b x t t p t

=

= =∑

In this case, the problem of

normal. 

Fig. 3.1 shows the function 

. Function  vanishes

time, and therefore control,

constant function with simple 

have the same properties, the 

usually said that the control 

that when the number of switches

greatest number (or ∞). Control

will switch 4 times. Consequently,

four. 

Fig. 3.1. A function 
* ( )jq t  that gives

)(* tu j )(* tq j

*u j

Application for Ship in Maneuvering  

(2.8) in area S; 

 

 principle [4, 13] it is possible 

(optimum) additional vector p*(t) 

control u*(t) and an optimum 

) is a necessary condition. It is 

  and ( )kp t∗ ,  

equations: 

* * *

*

* * *

*

[ ( ), ( ), ( ), ]
( ) ;

( )

[ ( ), ( ), ( ), ]

( )

k

k

H x t p t u t t

p t

H x t p t u t t

x t









       (2.12) 

Degenerate Problem 

that the interval has a 

3j,…,  

[ , ], 1, 2,3,...; 1, 2,...,t t T j r∈ γ = =     (3.1) 

* * *
0 if ;

( ) [ ( ), ] ( )
0 in other cas

j

j i

t t
q t b x t t p t

e

γ== = 
≠

     (3.2) 

of optimal speed will be called 

  and the corresponding

vanishes only in isolated moments in 

control, time-optimal, a piecewise 

 jumps. If all functions 

 task is a normal control. It is 

will switch when t = tᵞj and 

switches is equal to the 

Control  shown in Fig. 3.1 

Consequently, the number of switches is 

 

gives a well-defined control 
* ( )ju t . 

)(
*

txk
nk ,...,2,1=

],[ *
0 Tt

)(* tq j

)(* tq j

)(* tj

)(* tu j

)(* tu j
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3.2. Degenerate Problem 

Assume [1, 6, 15, 16] there is an interval  of one 

(or more) of sub-slot , such that 

 
* * *

ij 1 2

1

( ) [ ( ), ] ( ) 0 w  t [ , ]

n

j i j

i

q t b x t t p t ith T T

=

= = ∈∑   (3.3) 

This problem is called degenerate, and the interval [T1,T2]j 

(or intervals) - interval degeneracy. 

Function qj*(t) shown in Fig. 3.1, is equal to zero for all t 

of [T1,T2], and therefore corresponds to a degenerate problem. 

Thus, in the degenerate case the problem exists at least one 

time sub-slot  for which 

the ratio does not determine the optimum control, and as a 

function of x*(t) and p*(t). 

 

Fig. 3.2. Shown in the figure corresponds to the function qj*(t) of a degenerate 

problem of optimal control. 

The last statement does not mean that the optimal control 

does not exist or cannot be determined. It only means that a 

necessary condition does not give a definite relation between 

x*(t), p*(t), u*(t), t. Degenerate problems are typical for ship 

in addressing the meeting of movements. 

We consider the problem of optimal normal speed. In this 

case, thus excluded u*(t) from all the necessary conditions. 

Therefore, all the conditions are laid down by u*(t), in step 1 

will be reduced to the necessary conditions beyond the 

control of u*(t). As we will see in step 3, this fact will allow 

us to find the control-optimal. 

State two theorems that summarize these ideas. 

Theorem 1. Relay Principle [1, 11, 12]. Let u*(t) - optimal 

control for the problem, but also x*(t) and p*(t) - its 

corresponding phase trajectory and an additional vector. If 

the task is normal, components u1*(t), u2*(t),…, ur*(t) of 

control u*(t) shall be determined by the relations: 

 
* * *

ij

1

( ) [ ( ), ] ( ) 1,2,...,

n

j i

i

u t sign b x t t p t j r

=

  = − = 
  
∑   (3.4) 

for the t ϵ [t0,T*] Equation (3.4) can be written more 

compactly: 

 { } { }* * *( ) ( ) [ ( ), ] )u t SIGN q t SIGN B x t t p= − = −   (3.5) 

Thus, if a normal task, the components of the 

control-optimal are a piecewise-constant (or relay) functions 

of time. The following theorem can be proved by direct 

substitution. 

Theorem 2. Prerequisites [1, 11, 12]. Let u*(t) – optimal 

control for the problem, x*(t) – state at time-optimal 

trajectory and p*(t) – corresponding to an additional vector. 

Let T* – minimum time. If a normal task, it is necessary to: 

A) Satisfies the degenerate problem (3.2); 

B) The condition x*(t) and an additional vector p*(t) 

comply with the simplified canonical equations: 

 

*

* * *
kj ij

1 1

( ) [ ( ), ]

[ ( ), ] [ ( ), ] ( )

k k

n n

i

j i

x t f x t t

b x t t sign b x t t p t

= =

= −

  −  
  

∑ ∑

ɺ

 (3.6) 

*
* *

*
1

*

* * *
ij *

1 1 1

[ ( ), ]
( ) ( )

( )

[ ( ), ]
[ ( ), ] ( ) ( )

( )

n
i

k i

ki

r n n
ij

i i

ki i i

f x t t
p t p t

x t

b x t t
sign b x t t p t p t

x t

=

= = =

∂
= − +

∂

   ∂  +  
  ∂   

∑

∑ ∑ ∑

ɺ

(3.7) 

for the k = 1, 2,…,n and t ϵ [t0,T*]; 

C) Hamiltonian along the optimal trajectory is determined 

by the equation 

 

* * * * *

1

* * *
ij 0

1 1

[ ( ), ( ), ( ), ] 1 [ ( ), ] ( )-

- [ (t),t] ( )  [ , ];

n

i i

i

r n

i

j i

H x t p t u t t f x t t p t

b x p t t t T

=

= =

= +

∈

∑

∑∑
 (3.8) 

D) The final time T* the relation 

* * * *
ij

1 1 1

* *

*
1

1 [ ( ), ] ( ) [ (T),T] ( )

[ ( ), ]

n r r

i i i

i j i

n

f x T T p T b x p T

g x T T
e

T

= = =

−β
α

α
α=

+ − =

∂
=

∂

∑ ∑∑

∑
(3.9) 

E) At the initial time  

 *
0 0( ) ( )x t x t=                (3.10) 

the final time T* 

 * *[ ( ), ] 0,   1,2,..., - ; 1g x T T nα β βα = = ≥ ; (3.11) 

 

* * *
* *

* *
1

[ ( ), ]
( )

( )

n
g x T T

p T k
x T

β−
α

α
α=

∂
=

∂∑      (3.12) 

We give a geometric interpretation of Theorem 2 - 

*],[ 0 Tt

jTT ],[ 21 *],[ 0 Tt













−= ∑
=

n

i

iijj tpttbsigntu

1

***
)(]),([)( x

0t
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Prerequisites 

Assume that  and r = 2. As shown in Fig. 3.3, the 

matrix size B’[x*(t),t] associated with the conversion 2 × 3, 

displaying 3-dimensional vector p*(t) a 2-dimensional vector 

q*(t) = B’[x*(t),t]p*(t). 

 

Fig. 3.3. Geometric interpretation of the fact that the control of u*(t) should minimize the scalar product [u*(t), q*(t)]. 

In order to minimize the scalar product [u*(t), q*(t)], 

vector control u*(t) must have a maximum value and be 

directed opposite to the vector q*(t). So if, q*(t) is in the first 

quadrant, the vector u*(t) should be "resting" on the angle A 

square restrictions. If q*(t) in the second quadrant, the u*(t) 

should be sent to angle B, and so on. 

Prerequisites lead to a symmetric method for finding 

optimal control. This will be discussed in detail in the steps 

below. Results of degenerate problem and associated optimal 

values are necessary conditions. If this control u(t) and the 

corresponding trajectory is not satisfied any of the necessary 

conditions, it follows that u(t) is not optimal control. 

Steps are set ratio that must be met for optimal control 

u*(t), states x*(t), corresponding p*(t), and a minimum time 

T*. The essence of the challenge is to find the optimal control, 

and so the question arises: how can using all of these theorems 

to find the optimal control problem. The answer to this 

question will be given below. In addition, each step of our 

argument will be entitled, which will allow to trace the logical 

connection between them. 

Step 1. Formation of the Hamiltonian [6, 16]. We form the 

Hamiltonian H[x(t),p(t),u(t),t] system 

( ) [ ( ), ] [ ( ), ] ( )x t f x t t B x t t u t= +ɺ  and functional 

0

( ) 1

t

J u dt= ∫ . 

Hamiltonian using expressions can be written as 

 
[ ( ), ( ), ( ), ] 1 [ ( ), ], ( )

( ), [ ( ), ] ( )

H x t p t u t t f x t t p t

u t B x t t p t

= + +

′+
 (3.13) 

which emphasizes that x(t), p(t), u(t) – Vectors representing a 

function of time. At this point, we do not impose restrictions 

on any vector values x(t), p(t), u(t), or by t. 

Step 2. Minimizing the Hamiltonian [6, 16]. Hamiltonian 

H[x(t), p(t), u(t), t] depends on  variables. Let us 

assume that we have fixed x(t), p(t), u(t) and t and consider 

the behavior of the Hamiltonian (which now is only a 

function of u, as x(t), p(t), and t are constant) when changing 

u(t) limitations in Ω. In particular, we want to find a control 

in which the Hamiltonian has the absolute minimum. 

Therefore, we define H-minimal control as follows. 

Definition 1. H-minimal control [16]. Admissible control 

u0(t), H-called minimal if it satisfies 

 0[ ( ), ( ), ( ), ] [ ( ), ( ), ( ), ]H x t p t u t t H x t p t u t t≤  (3.14) 

for all u(t) ϵ Ω and all x(t), p(t) and t. 

Previously, it was found that the minimum control H - u0(t), 

for the Hamiltonian of the type (3.13) is given by equation: 

 

0
ij

1

( ) [ ( ), ] ( )

1, 2,...,

n

j i

i

u t sign b x t t p t

j r

=

  = −  
  

=

∑
    (3.15) 

or in vector form, 

 { }0 ( ) [ ( ), ] ( )u t SIGN B x t t p t′= −       (3.16) 

Substitute the H-minimal control u0(t), expression in 

(3.13): 

 
{ }

0
[ ( ), ( ), ( ), ] 1 [ ( ), ], ( )

[ ( ), ] ( ) , [ ( ), ] ( )

H x t p t u t t f x t t p t

SIGN B x t t p t B x t t p t

= + −

′ ′−
 (3.17) 

Consequently, 

 

0

1

ij

1 1

[ ( ), ( ), ( ), ]=1+ [ ( ), ] ( )-

- [ (t),t] ( )  

n

i i

i

r n

i

j i

H x t p t u t t f x t t p t

b x p t

=

= =

∑

∑∑
 (3.18) 

The right side of (3.18) is a function only of the x(t) and 

p(t). We define the function H0[x(t), p(t), t] by the relation 

3=n

12 ++ rn
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0

( )
[ ( ), ( ), ]= min [ ( ), ( ), ( )]

u t
H x t p t t H x t p t u t

∈Ω    (3.19) 

These definitions and equations are not explicitly linked 

with the trajectories and optimal values. 

Step 3. Restriction x(t), and p(t). We require that the (as yet 

undetermined) vectors x(t) and p(t) satisfies the differential 

equation [4]: 

 
0
[ ( ), ( ), ]

( )
( )

H x t p t t
x t

p t

∂=
∂

ɺ          (3.20) 

 
0
[ ( ), ( ), ]

( )
H x t p t t

p t
x

∂= −
∂

ɺ        (3.21) 

or, equivalently, differential equations 

ij

1 1

( ) [ ( ), ] [ ( ), ] [ ( ), ] ( )

r n

k k kj i

j i

x t f x t t b x t t sign b x t t p t

= =

  = −  
  

∑ ∑ɺ (3.22) 

1

ij

1 1 1

[ ( ), ]
( ) ( )

( )

[ ( ), ]
[ ( ), ] ( ) ( )

( )

n
i

k i
ki

n n n
ij

i i
kj i i

f x t t
p t p t

x t

b x t t
sign b x t t p t p t

x t

=

= = =

 ∂ = − + ∂  

   ∂     +    
  ∂      

∑

∑ ∑ ∑

ɺ

(3.33) 

for . 

Note that 

0

0

( ) ( )

[ ( ), ( ), ] [ ( ), ( ), ( ), ]

( ) ( )
u t u t

H x t p t t H x t p t u t t

p t p t =

∂ ∂=
∂ ∂  (3.24) 

and 

0

0

( ) ( )

[ ( ), ( ), ] [ ( ), ( ), ( ), ]

( ) ( )
u t u t

H x t p t t H x t p t u t t

x t x t =

∂ ∂=
∂ ∂  (3.25) 

Step 4. The purpose of this section is to find the optimal 

control u*(t), transfers the system 
( ) [ ( ), ] [ ( ), ] ( )x t f x t t B x t t u t= +ɺ from a given initial state x(t0) 

to S. We assume that this problem is normal. Model the 

equation (3.22) and (3.23) on a computer. At a certain initial 

time  use we have taken the initial values of the phase 

coordinates as the initial conditions of the system (3.22). As 

initial values of the functions p1(t0), p2(t0),...,pn(t0) will use 

some of the expected values [6, 16]. 

Let qj(t), j = 1, 2,..., r – functions defined by the relations 

 ij

1

( ) [ (t),t] ( )

n

j i

i

q t b x p t

=

=∑            (3.26) 

Assume that 

 0( ) 0 1, 2,...,jq t for j r≠ =       (3.27) 

Equations (3.27), (3.26) and (3.15) imply that the number 

of { }0
0 0( ) ( )j ju t sign q t= − equal 1 or -1. Thus, the solution of 

the equations (3.22) and (3.23) it is determined, at least for t, 

close to t0. We denote the solutions of equations (3.22) and 

(3.23) through 

 
0 0 0

0 0 0

( ) [ , , ( ), ( )]

( ) [ , , ( ), ( )]

x t x t t x t p t

p t p t t x t p t

= 
= 

      (3.28) 

to emphasize their dependence on a known initial state x(t0) 

and the intended initial value p(t0). 

Simulation is as follows. Measuring signals x(t0) and p(t0), 

at each time we get and register signals: 

 ij

1

( ) [ ( ), ] ( ), 1,2,...,

n

j i

i

q t b x t t p t j r

=

= =∑  (3.29) 

 ( ), ( ), ( ), 1,2,...,j j jq t q t q t j r=ɺ ɺɺ ɺɺɺ        (3.30) 

0

1 1

[ ( ), ( ), ] 1 [ ( ), ] ( ) ( )

n r

i i j

i j

H x t p t t f x t t p t q t

= =

= + −∑ ∑  (3.31) 

 [ ( ), ], 1,2,...,g x t t nα α β= −          (3.32) 

 
[ ( ), ]

, 1, 2,...,
g x t t

n
t

α α β∂
= −

∂
       (3.33) 

 
[ ( ), ]

[ ( ), ] , 1, 2,...,
( )

g x t t
h x t t n

x t

α
α α β∂

= = −
∂

 (3.34) 

Using concrete (randomly selected) value p(t0), 

sequentially for each time t in some interval [t0, T], ask 

ourselves the following questions: 

Question 1. If qj(t) = 0, then qj(t) ≠ 0 ? If ( ) 0jq t =ɺɺ , then 
( ) 0jq t ≠ɺɺ ? (And so on). If the answer to the first question is 

positive (i.e. “Yes”), then we ask the second question. If the 

answer is negative (i.e. “No”), then we change the value p(t0) 

and repeat again the first question. 

Question 2. If the answer to the first question is “Yes”, is 

there a time T, for which satisfies 

 [ ( ), ]=0, 1, 2,..., ?g x T T for all nα α β= −    (3.35) 

If the answer to the second question is “No”, we change 

p(t0) and start all over again. If the answer is “Yes”, then ask 

a third question. 

Question 3. If the answer to the second question is “Yes”, 

are there permanent third question. e1, e2,…, en-β such that the 

relation of: 

 
0

1

[ ( ), ]
[ ( ), ( ), ] ?

n
g x T T

H x T p T t e
T

β
α

α
α

−

=

∂
=

∂∑     (3.36) 

If the answer is “No”, then we must change p(t0) and start 

all over again. If the answer is “Yes”, then go to question 4. 

nk ,...,2,1=

0t
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Question 4: If the answer to the third question

there permanent k1, k2,…, kn-β such that the relation

 
1

[ ( ), ]
( ) ?

( )

n
g x T T

p T k
x T

β
α

α
α

−

−

∂
= −

∂∑

If the answer is “No”, then we must change

over again. If the answer is “Yes”, it means

one in which the answers to all questions 1 

this case, we remember accepted p(t0

experiment at first, until we find all the 

which the answers to questions 1 - 4 are positive.

sequence of questions is shown in Fig. 3.2. 

Step 5. Possible control-optimal. Formalize

the modeling done in step 4. We have identified

which is a set of initial values 0( )p t
⌢

, corresponding

given x(t0) and having the property that the

questions 1 - 4 will be positive (i.e. “Yes

0ℑ
⌢

is a subspace of the n-dimensional space

imagine 0ℑ
⌢

 as a “way out” of the logical

Fig. 3.4 more precisely 0ℑ
⌢

 is defined as follows

Fig. 3.4. Logic diagram modeling that can be used for

control. 

Definition 2. Let 0ℑ
⌢

 – area of initial states

variable 0( )p t
⌢

, with the following properties

1) For each 0 0( )p t ∈ ℑ
⌢⌢

 corresponding solutions

and (3.23), denoted by 

 
0 0 0

0 0 0

( ) [ , , ( ), ( )]

( ) [ , , ( ), ( )]

x t x t t x t p t

p t p t t x t p t

=
=

⌢ ⌢ ⌢

⌢ ⌢ ⌢

satisfy the relation 

 ij

1

( ) [ ( ), ] ( ) 0, 1, 2,...,

n

j i

i

q t b x t t p t j r

=

= = =∑ ⌢ ⌢

only on a countable set of points t; 

2) There is a time T
⌢

 (depending on 

such that it is possible to find the constants

k1, k2,…, kn-β, that respects the following relationships:
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question is “Yes”, are 

relation of: 

[ ( ), ]
( ) ?

( )

g x T T
 (3.37) 

change p(t0) and start all 

means that we found p(t0) 

 - 4 are positive. In 

t0) and begin to 

 vectors p(t0), for 

positive. The logical 

 

Formalize the results of 

identified the set 0ℑ
⌢

, 

( ) corresponding to a 

the answers to all 

es”). It is clear that  

space Rn. You can 

ogical process shown in 

follows [1, 4, 16]. 

 

for finding the optimal 

states an additional 

properties [4, 11, 16]: 

solutions of (3.22) 

0 0 0

0 0 0

( ) [ , , ( ), ( )]

( ) [ , , ( ), ( )]

x t x t t x t p t

p t p t t x t p t





      (3.38) 

( ) [ ( ), ] ( ) 0, 1,2,...,q t b x t t p t j r= = =  (3.39) 

 x(t0) and 0( )p t
⌢

), 

constants e1, e2,…, en-β and 

relationships: 

 

0

1

ij

1 1 1

[ ( ), ( ), ]= [ ( ), ] ( )

( ), ( ) ? 

n

i i

i

r n

i

j i

H x T p T T f x T T p T

b x T T p T e

=

= = =

 − = 

∑

∑∑ ∑

⌢ ⌢ ⌢ ⌢ ⌢ ⌢⌢ ⌢ ⌢ ⌢

⌢ ⌢ ⌢⌢ ⌢

 [ ( ), ]=0, 1,2,...,g x T T nα α β
⌢ ⌢⌢

 
1

( ) ?

n

p T k

β

α
α

−

−

= −∑
⌢⌢

You can return to Theorem

(3.40) and (3.9), (3.41) with (3.11)

virtue of the fact that the functions

countable set t, and also similar

(3.23) with (3.6) and (3.7) we obtain

Lemma 1. Each solution 

produced by the element of 

necessary conditions for simplified

We have shown that H-

Definition 1. H-minimal control)
0 ( ) { [ ( ), ] ( )}u t SIGN B x t t p t′= − for

the 0 0( ) ( )x t x t= ⌢ , 0 0( ) ( )p t p t= ⌢

0 0
( ) ( )
( ) ( )

垐( ) ( ) { [ ( ), ] ( )},   [ , ]x t x t
p t p t

u t u t SIGN B x t t p t t t T=
=

= = − ∈

Comparing the expression (3.43)

into account Lemma 2, we obtain

Lemma 2. Each control 0( )u t
⌢

0ℑ , satisfies the necessary conditions

principle. Note that [6, 16] 

 0[ ( ), ( ), ( ), ] [ ( ), ( ), ( ), ]H x t p t u t t H x t p t u t t≤⌢ ⌢ ⌢ ⌢ ⌢ ⌢

for all 0( ) [ , ]u t and t t T∈ Ω ∈
⌢

. 

Now to clarify the meaning 

usefulness of the necessary 

control-optimal. 

To be specific, let us assume

control-optimal, transforming the

state x(t0) to S. All three controls,

same minimum time T*. We

controls so 

 * * * *
1 2 3 0( ), ( ), ( ),   t [ , ]u t u t u t t T

If you draw a 4 modeling 

Suppose that we can find 

different departments, corresponding

These controls will be 

 0 0 0 0 0
1 2 3 4 5( ), ( ), ( ), ( ), ( ),u t u t u t u t u t
⌢ ⌢ ⌢ ⌢ ⌢

and the corresponding slots in
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1 1 1

[ ( ), ( ), ]= [ ( ), ] ( )

[ ( ), ]
( ), ( ) ? 

i i

n

H x T p T T f x T T p T

g x T T
b x T T p T e

T

β
α

α
α

−

= = =

−

∂
− =

∂

∑

∑∑ ∑

⌢ ⌢ ⌢ ⌢ ⌢ ⌢⌢ ⌢ ⌢ ⌢

⌢ ⌢⌢
⌢ ⌢ ⌢

⌢

(3.40) 

[ ( ), ]=0, 1,2,...,g x T T nα β= − ; (3.41) 

[ ( ), ]
( ) ?

( )

g x T T
p T k

x T

α∂
= −

∂∑
⌢ ⌢⌢

⌢
ɺɺ

 (3.42) 

Theorem 2 and compare the relation 

(3.11) and (3.42) and (3.12). By 

functions  zero only on a 

similar to the equations (3.22) and 

obtain the following lemma. 

 0( )x t
⌢

 and 0 0( ), [ , ]p t t t T∈
⌢⌢

, 

 the set 0ℑ
⌢

, satisfies all the 

simplified Theorem 2 [6, 16]. 

-minimal control u0(t) (see. 

control) is given by [see. ratio (3.16)] 

( ) { [ ( ), ] ( )}u t SIGN B x t t p t for any x(t), p(t) and t. As for 

0 0( ) ( )p t p t
⌢

and 0[ , ]t t T∈
⌢

, find 

0
垐( ) ( ) { [ ( ), ] ( )},   [ , ]u t u t SIGN B x t t p t t t T′= = − ∈

⌢

(3.43) 

(3.43) with (3.16) and taking 

obtain the following lemma. 

0( )u t
⌢

, product of the elements of 

conditions of theorem 1 - Relay 

[ ( ), ( ), ( ), ] [ ( ), ( ), ( ), ]H x t p t u t t H x t p t u t t≤⌢ ⌢ ⌢ ⌢ ⌢ ⌢
 (3.44) 

( ) [ , ]u t and t t T
⌢

 

 of Lemmas 2 and 3, and the 

 conditions for finding the 

assume that there are three different 

the system from a given initial 

controls, by definition, require the 

We denote these (time-optimal) 

* * * *
1 2 3 0( ), ( ), ( ),   t [ , ]u t u t u t t T∈        (3.45) 

 step, we define the set 0ℑ . 

 [the expression (3.43)] five 

corresponding to the elements 0ℑ . 

0 0 0 0 0
1 2 3 4 5( ), ( ), ( ), ( ), ( ),u t u t u t u t u t
⌢ ⌢ ⌢ ⌢ ⌢

    (3.46) 

in which they are defined is 

)(tqi

⌢
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denoted 

 0 1 0 2 0 3 0 4 0 5[ , ],[ , ],[ , ],[ , ],[ , ],t T t T t T t T t T
⌢ ⌢ ⌢ ⌢ ⌢

        (3.47) 

respectively. It can be argued that three of the five 

departments (3.46) will be identical to the three offices, the 

optimal time [see. (3.45)]. For definiteness, we assume: 

 

0 * * *
1 1 1 0

0 * * *
2 2 2 0

0 * * *
3 3 3 0

( ) , ,   t [ , ];

( ) , ,   t [ , ];

( ) , ,   t [ , ].

u t u T T t T

u t u T T t T

u t u T T t T

= = ∈
= = ∈ 
= = ∈ 

⌢⌢

⌢⌢

⌢⌢

   (3.48) 

The question arises: what is the significance of controls 
0
4 ( )u t
⌢

 and 0
5 ( )u t
⌢

? These two controls must be 

locally-optimal. Since there is the principle of minimum 

conditions for a local, it cannot distinguish local from global 

optimal controls. The only way to determine which 

departments 0 0
1 5( ),..., ( )u t u t
⌢ ⌢

 are globally optimal - is to 

measure and compare the times 1 5,...,T T
⌢ ⌢

 and, thus, found 

that 

 

*
1 2 3

*
4

*
5

;

;

.

T T T T

T T

T T

= = =
> 
> 

⌢ ⌢ ⌢ ⌢

⌢

⌢

           (3.49) 

For this reason, we emphasize that the necessary 

conditions give only controls that can be optimal. In the next 

section we discuss the results obtained above. 

In the previous sections were obtained necessary 

conditions for optimal control and developed a systematic 

method for determining the idealized offices, one of which 

may be the best in performance, but also established 

(Theorem 1) that if the problem is normal, then the 

components of the control-optimal, are piecewise constant 

functions of time [1, 4, 11, 16]. 

As for the normal components of the problem optimal 

control must be piecewise constant functions of time, one of 

the necessary conditions, namely: 

* * * * *[ ( ), ( ), ( ), ] [ ( ), ( ), ( ), ];

( )

H x t p t u t t H x t p t u t t

u t

≤
∈ Ω

 

allow you to restrict the search for optimal class control 

. This is perhaps the most useful result 

obtained from the minimum principle, while the rest of the 

necessary conditions give more appropriate boundary 

conditions and transversely conditions. 

It should be noted that the Hamiltonian [6, 16] 

 
[ ( ), ( ), ( ), ] 1 [ ( ), ], ( )

( ), [ ( ), ] ( )

H x t p t u t t f x t t p t

u t B x t t p t

= + +

′+
 (3.50) 

and differential equations 

 

[ ( ), ( ), ( ), ]
( )

( )

[ ( ), ( ), ( ), ]
( )

( )

H x t p t u t t
x t

p t

H x t p t u t t
p t

x t

∂ = ∂ 
∂ = −
∂ 

ɺ

ɺ

 (3.51) 

System is fully defined and functional and thus 

independent of the boundary conditions and at the region S. 

In addition, the minimum control H – u0(t) (cm. Definition 1. 

H-minimal control), defined by the equation [6] 

 { }0 ( ) [ ( ), ] ( )u t SIGN B x t t p t′= −  (3.52)
 

independently (functional) of the boundary conditions 

imposed. Thus, steps 1 - 3, are exactly the same for any 

problem about the optimal speed. Necessary conditions for 

the Hamiltonian and an additional variable in the final time 

T* together with a given initial state and equations region S 

provide enough boundary conditions for the solution of the 

system 2n differential equations. 

We showed step by step process used to determine the 

controls 0 ( )u t
⌢

, the resulting trajectories 0( )x t
⌢

 and 

appropriate additional variables 0( )p t
⌢

, meet all the 

necessary conditions. In order to highlight these values, we 

make the following behavior. 

Definition 3. Extreme variables. The control 0 ( )u t
⌢

 called 

extreme if 0 ( )u t
⌢

 and the corresponding trajectory 0( )x t
⌢

 

and an additional variable 0( )p t
⌢

 meet all the conditions [i.e. 

Equation (3.38) and (3.40) - (3.44)]. It will also be called 

0( )x t
⌢

 and 0( )p t
⌢

 extremely trajectories state and an 

additional variable, respectively [1, 9, 13]. 

4. Remarks 

In general, can be a lot of extreme control. Each extreme 

control gives a trajectory that may be optimal either locally 

or globally. Since extreme control satisfies all the necessary 

conditions, we can note the following [1, 4, 14]. 

Remark 1. If the optimal control u*(t) exists and is unique 

and there is no other local optimal controls, there is only one 

extremely control 0 ( )u t
⌢

, which is the optimal time, i.e. e. 
0 ( ) ( )u t u t∗=⌢

. 

It is clear that the assumption of the absence of other 

locally-optimal controls made in Remark 1 makes the 

principle of minimum of necessary and sufficient condition. 

Remark 2. If there is only a variety of optimal controls and 

if there m2 control, optimal locally, but are not optimal 

globally, then all will be m1 + m2 extreme control. 

Remark 3. If a globally-optimal control does not exist and 

there m2 different locally optimal controls, there is a m2 

extreme control. 

Therefore, the existence of extreme control does not imply 

the need for a globally-optimal control. 

Remark 4. If the optimal control exists, it can be found by 

calculating the time T required by each of the extreme control 

and control by minimizing T. 

These remarks lead to the conclusion that dealing with the 

rjtu j ,...,2,1,1)( ==
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problem of optimal control, we need to know the answers to 

the following questions: 

1) Whether there is a control-optimal? 

2) Only if the optimal control? 

3) Whether a task is normal? 

4) Does not contain additional information that is 

necessary conditions for the data system and the area S? 

Unfortunately, for arbitrary nonlinear systems and areas of 

S answers to these questions have not yet been received. 

There are, however, a number of results for a class of linear 

systems. Since this class of systems is extremely important, 

we will devote a few paragraphs to it to get additional results 

that are important, both from theoretical and practical points 

of view. 

5. Conclusion 

Accordingly, the research devotes the formulation of the 

problem of optimizing the oncoming traffic and gives a 

description of the concept and control system that 

implements the navigation of ships in maneuvers. In sum, we 

can conclude as following [5, 10, 14]: 

- The substantiation of statement of problems of control is 

made by a meeting of movements and geometrical 

interpretation of a problem of a finding of ship control, 

optimum on time, in the form of moving areas in space of 

statuses is offered in due course. 

- Possibilities of a principle of a minimum for a finding of 

optimum controls are considered and ways of reception of 

numerical decisions are offered. 

- The reasons of occurrence normal and degenerate control 

in problems of ship control are established by a meeting of 

movements [8]. 
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