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Abstract 

It has not been solved that the fruits, vegetables, strawberries, cells, blood and a bottle of liquor are damaged, broken during 

transportation. It is the greatest factor in this situation that there is a danger vibration frequency band where these are easy to 

scratch and are prone to death. If there are eigen frequencies within this danger frequency band, it needs that those eigen 

frequencies within this danger frequency band are moved out of the band. In the former paper, it was shown difficult to apply the 

existing topology optimization methods using homogenization method or density method to control plural eigen frequencies for 

solving this problem. Therefore in the former paper, it was proposed the so called “Interactive Energy Density Topology (IEDT) 

change method” that is a new high precision and high efficiency method for controlling plural eigen frequencies simultaneously 

referring to the kinetic and the strain energy density distributions. Here it is discussed more about the IEDT change method and 

show that it is sometimes difficult for the traditional methods to get solutions because especially in the dynamic problem, eigen 

frequencies may go up or down depending on its size even if reinforcement or hall for change topology is applied at the same 

location. But with the proposed IEDT change method, always it can be realized because the proposed method has wider solution 

spaces than the traditional one. Lastly, it is shown that this IEDT method is also very effective to reduce the integral value of 

response curve by frequency. 
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1. Introduction 

Fruits and vegetables, blood, induced pluripotent stem 

(iPS) cells, bottles of liquor and wine have frequency bands 

that are susceptible to damage. And so the box system should 

be designed such that it has not the eigen frequencies within 

these danger frequency bands. 

To expel the eigen frequencies from the danger frequency 

band, for example, it is redesigned that some eigen frequen-

cies to be higher and some eigen frequencies to be lower. 

As far as this problem, in the former paper [1, 2], it has 

proven difficult to achieve using traditional topology opti-

mization methods which consist of the using homogenization 

[3-11], density method [12-15]. 

Therefore, it was developed a new method of controlling 

the eigen frequencies by returning to the origin of the vibra-

tion theory, in which the eigen frequency is determined by 

the equivalent stiffness and the equivalent mass. Assuming 
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that the shipping box is transported by placing it on a soft 

object, the desired results were obtained by considering the 

flat plate as a shipping box under free-free condition [1]. Here 

with the same model, but this time under different simple 

support, it is considered the significance and new applications 

of this method. In other words, in traditional topology opti-

mization analysis, the optimized solution can be obtained with 

the design variables distributed in that state while maintaining 

the current topology. Based on the above results, holes are 

created at locations below the threshold. On the other hand, 

with the proposed method, the solution can be found interac-

tively while change the topology by predicting the direction of 

change of each eigen frequency with referring to strain and 

kinematic energy density distributions. Although it is some-

times difficult for the traditional methods to get solutions 

because especially in the dynamic problem, eigen frequencies 

may go up or down depending on its size even if reinforce-

ment is applied at the same location. But with the proposed 

method, always it can be realized because the proposed 

method has wider solution spaces than the traditional one and 

with the proposed method, the solution can be found faster 

and more reliably. Moreover, even though it is not convergent 

by the traditional method, it cannot be clear whether the set 

objective function is appropriate or not. However, it becomes 

clear by referring to strain and kinematic energy density dis-

tributions of the eigen modes under consideration that are 

used in the new proposed method. And it is shown that the 

task will be reset to a more reasonable one based on this in-

formation. Lastly, it is shown that this IEDT change method is 

not only effective to reduce the peak response value but also 

much more effective in reducing integral value of response 

value within dangerous band than the traditional optimization 

analysis for minimization of the integral value. 

2. Topology Optimization Method Using 

Traditional Density Method and New 

Proposed Method 

The goal of this research is the design of transport boxes 

that safely carry strawberries, cells, and blood. But here the 

object is to certify the proposed method and so the model is a 

rectangular flat plate with the size of 420 mm × 300 mm, 

thickness of 1 mm as indicated in Figure 1. The material of the 

plate is cardboard, which has a density of 256.9 kg/m
3
, 

Young’s modulus of 0.664 GPa and Poisson’s ratio of 0.34. 

As indicated in the same figure, the flat plate that divided into 

120 (30 mm long and 35 mm wide per piece). By modal 

analysis under simple support conditions all around, 1
st
 to 4

th
 

orders are 12.99 Hz, 26.13 Hz, 38.71 Hz, 47.96 Hz. It is dealt 

with the problem where the box system has no eigen fre-

quencies between 25.0 Hz and 40.0 Hz which is considered 

to be a danger frequency band. 

 

2.1. Application of Density Topology  

Optimization Method 

Here, by using the density topology optimization method, 

because the 2
nd

 and 3
rd

 eigen frequencies are in this danger 

frequency band and the 1
st
 and 4

th
 eigen frequencies are far 

from the danger frequency band, it is started by not consid-

ering the 1st and 4th orders. It is set the 2
nd

 and the 3
rd

 target 

eigen frequencies to 24.0 Hz and 41.0 Hz respectively. The 

objective function of the optimization is the generalized ei-

genvalue index [5] indicated in Eq. (1), 
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fi (i = 1, 2) are the target values 24.0 Hz and 41.0 Hz of 

the 2
nd

 and 3
rd

 eigen frequencies,   
 =0 Hz, n = 2, and m is 

the number of eigen frequencies to consider, here m = 2. 

Wi(i=1~2) are weights. The density topology optimization is 

performed as follows. (1) The design variables are the plate 

thickness of each element except the plate thicknesses of the 

elements in surrounding part so that the outer shape does not 

change by optimization calculation. (2) As indicated in Fig-

ure 1, the elements are divided into right and left, up and 

down symmetry, and is also set so that symmetry is main-

tained. 

 
Figure 1. FEM model of test piece: 120 elements. Eigen frequencies 

from first to forth under simple support condition: 12.999Hz, 

26.155Hz, 38.777Hz, 48.044Hz. 

Above results, the number of rectangular elements is 120 

and its of design variables is 20. The thickness of each ele-

ment shall be 0 mm in the lower limit and 1.0 mm in the up-

per limit. (3) The convergent condition is the value of Eq. (1) 

is 0.1 or less. Or, it is set the maximum number of iterations to 

8000. (4) Modal analysis using the finite element method and 

optimization by linear approximation method [16] are both 

with COMSOL Multiphysics 5.5 [17]. (5) weight reduction 

is given as a constraint function. Here, the total weight of the 

cardboard in the shape of Figure 1 is 32.4 g, and the weight 

corresponding to 40 elements of the surrounding part is 10.8 
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g so that the lower limit is 11 g, and the upper limit is 90% of 

current weight, 29.16 g. 

The above optimization has been performed. With W= 

[1.0,1.0], the repeat number 400 or later, the 2
nd

 and 3
rd

 eigen 

frequencies converge to 24.76 Hz and 38.39 Hz respectively 

as shown in Figure 2 left, that is, the 3
rd

 one does not con-

verge to the target frequency. If it is increased the third-order 

weight and recalculated with W= [1.0,1000.0], the repeat 

number 150, the 2
nd

 and 3
rd

 eigen frequencies converge to 

26.16 Hz and 38.79 Hz respectively. That is, the third order is 

still almost unchanged from the initial value and on the other 

hand, the 2
nd

 order gets worth by making the weight relatively 

small. Because the topology optimization model is usually 

divided into finer elements, it is calculated with 1280 ele-

ments where after repeating 180 times, the target value was 

not reached and converged. The calculation time was 8 hours 

although the calculation time required for convergence with 

the 80 elements model in Figure 1 was 40 minutes. Here, why 

doesn't it converge to the target value. It will be tried to clarify 

this in the next section although reasons for failure to con-

verge have never been mentioned. 

  
                      (a) Convergence history                 (b) Plate thickness distribution from 0.0mm to 1.0mm 

Figure 2. Results by conventional topology optimization using thickness distribution: Left: Objective function history; It converges around 400 

iterations. Right: Final plate thickness distribution. The 2nd eigen frequency is 24.76 Hz and reaches the target. But the 3rd one is 38.39 Hz 

and does not reach the target. 

2.2. The Proposed Method “Interactive Energy 

Distribution Topology (IEDT) Change 

Method” 

Now it is briefly described the proposed method to the ex-

tent that it can be discussed here. 

The newly proposed IEDT change method using energy 

density is as follows. First, the energy density distribution of 

each eigen frequency mode to be moved is investigated, and 

the position of the spring part with large strain energy density 

distribution and the mass part having large kinetic energy 

density are grasped for each eigenmode. If you want to loWEr 

the eigen frequency, holes are provided on the spring part or 

reinforcements are provided on the mass part. If you want to 

increase it, holes are provided on the mass part or reinforce-

ments are provided on the spring part. The eigen frequency is 

controlled by providing holes or reinforcements, but from the 

viewpoints of weight reduction and work efficiency, the work 

of providing holes is first made. 

Each eigen angular frequency is given by Eq. (2). 

n

n

n

k

m
                   (2) 

Where ω n, k n, and m n of Eq. (2), are nth order eigen an-

gular frequency, equivalent stiffness, and equivalent mass. If 

the equivalent stiffness becomes smaller by providing holes 

on the spring part, or if the equivalent mass is increased by 

providing reinforcements on the mass part, the eigen angular 

frequency decreases. Conversely, when it is necessary to 

increase the eigen angular frequency, holes are provided on 

the mass part and/or reinforcements are provided on the 

spring part. This is the basic idea of this newly proposed 

method. 

2.3. Attempt to Elucidate the Cause for Not 

Getting the Desired Results in the Previous 

Section 

It is unclear whether the reason why convergence was not 

achieved was due to the correct problem setting in the first 

place or due to the lack of validity of settings such as weights 

or due to the lack of detail in model elements. Here, it is 

considered whether it is possible to determine whether the 

assignment settings are correct or not from energy density 

distributions that are the key information for the proposed 

IEDT change method. It is shown in Figure 3 that eigen fre-

quencies of 1
st
 to 4

th
, each strain energy Ws and each kinetic 
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energy Wk. under conditions of simple support all around. The 

first line is the order and 2(1,2) means that the whole second 

mode, primary in short direction, secondary in longitudinal 

direction. The 2
nd

 line is eigen frequencies, the 3
rd

 line is each 

mode shape, the 4
th

 line is Ws and the 5
th

 line is Wk. Because 

the challenge here is first to change the topology by simply 

creating holes without allowing reinforcement, it is to create 

holes on the mass part of the 3
rd

 eigen mode. 

  
                                  (a)                                          (b)                    (c) 

Figure 3. (a): 1st row from the top; 1st- 4th modes of the plate in Figure 2 under simple support condition. 2nd row from the top; 1st- 4th strain 

energy distributions. 3rd row from the top; 1st- 4th kinetic energy distributions. (b) Holes are made on the 2nd spring area. 2nd eigen frequency 

decreases from 26.13 Hz to 19.41 Hz as expected. (c) Holes are made on the common area of 3rd spring and mass. 3rd eigen frequency de-

creases from 38.71 Hz to 36.65 Hz contrary to expectations, predictably. 

Although places with large numbers in Ws and Wk are 

common, the numbers in Ws are superior to the ones in Wk 

and so this common location is supposed to be spring loca-

tions. Therefore, the 3
rd

 eigen frequency decreases after set-

ting hole on that common location. For example, if the hole 

is set as shown in Figure 3(c), the 3
rd

 eigen frequency de-

creases to 36.65 Hz as predicted. This means that increasing 

the 3
rd

 order is difficult to begin with and so this means that 

the problem setting lacked validity. On the other hand, there 

are two symmetrical locations where the numbers in Ws, Wk 

are both large on the 2
nd

 eigen mode. Because the numbers 

are almost same, it is predicted that the 2
nd

 eigen frequency 

remains almost unchanged even if a hole is set on the common 

location. Here, as far as the 2
nd

 eigen mode, there are loca-

tions where only Ws or Wk are remarkable. 

The task of lowering the 2
nd

 eigen frequency may be 

achieved if it is set holes on the location where only the 

number in Ws is remarkable. In fact, it is confirmed that the 

2
nd

 eigen frequency goal can be achieved even with conven-

tional methods. It turned out that the problem in the previous 

section was an impossible task in the first place by confirming 

the energy density distributions that are used in IEDT change 

method. Also, as mentioned above, although locations with 

large numbers in Ws and Wk are common, the numbers in Ws 

are superior to the ones in Wk and so this common location is 

supposed to be spring locations. 

And so if it is reinforced on this common location, there is 

a possibility that the 3
rd

 eigen frequency will increase and the 

problem will be solved. Therefore, it will be considered the 

case where reinforcement is allowed in the next section. 

2.4. Application of Density Topology  

Optimization Method for Convergence 

Tasks 

With the conventional topology optimization method for 

the problem in section 2.1, the target eigen frequency was not 

reached. At that time, design variable plate thickness was 

from 0.0mm to 1.0mm. It is possible to reach the goal by 

increasing the plate thickness to 1.0 mm or more, because it is 

conceivable that the goal can be achieved through counter-

measures by reinforcement are also allowed. It was tried to 

control the 2
nd

 and 3
rd

 eigen frequencies by setting the 2
nd

 

and the 3
rd

 target eigen frequencies to be 24.0 Hz and 41.0 

Hz respectively. The other conditions for the optimization 

are same as the ones in section 2.1. The restraint condition is 

also the same as the ones in section 2.1, less than 90% of the 

weight. As a result, after the number of iterations is 390, each 

eigen frequency from the 1
st
 to the 4

th
 converges to 12.393Hz, 

23.965 Hz, 40.764Hz, 47.347 Hz and reaches the goal. The 

weight changes from 32.36g to 29.18g that also reaches the 

restraint condition. The last shape is shown in the left of 

Figure 4 and the history until convergence is shown in the 

center of Figure 4 The white part is the thinnest 0.1mm and 

the dark blue part is the maximum thickness, 3.0 mm. The 

thickness of each part varies from 0.1mm to 3.0mm in a 

complicated manner and so it is very expensive to get its 

manufactured products by additive 3D printer. As is often 

done, if you make holes at locations of 0.3mm or less and add 

http://www.sciencepg.com/journal/ijmea


International Journal of Mechanical Engineering and Applications http://www.sciencepg.com/journal/ijmea 

 

41 

3.0mm reinforcement at locations of 2.4 mm or more, it be-

comes the shape as shown in Figure 4 right. With this shape 

under simple support all around, the eigen frequencies from 

the 1
st
 to the 4

th
 are 11.937 Hz, 23.551Hz, 35.577Hz, 

44.413Hz and so even though it is possible to move all eigen 

frequencies out of the danger frequency range, some eigen 

frequencies move to the danger frequency range again after 

change the topology with holes and/or reinforcements. As a 

result, it can be said that with this conventional method, it is 

quite difficult to carry out the actual design. 

   
 (a) Thickness distribution from 0.0mm to 3.0mm        (b) Convergence graph          (c) Holes are made on 0.3mm or less parts 

Figure 4. Results obtained through reinforcement: Left; thickness distribution from 0.0mm to 3.0mm when eigen frequencies (1st, 2nd, 3rd, 4th) 

converge to (12.393 Hz, 23.965 Hz, 40.764 Hz, 47.347 Hz). It reaches goal. Center; objective function history, the horizontal axis is the number 

of iteration, the vertical axis is the generalized eigen frequencies index. Right; holes are made on 0.3 mm or less parts and reinforcements are 

provided on 2.4 mm or more parts from plate thickness 1mm to 3mm. As a result, eigen frequencies (1st, 2nd, 3rd, 4th) become (11.937Hz, 

23.551Hz, 35.577Hz, 44.413Hz). It leaves the goal again. 

3. Application of IEDT Change Method 

and Consideration 

In the previous chapter, it was attempted to achieve the goal 

using the traditional topology optimization method. In section 

2.1, it was performed optimization analysis for the topology 

change design with setting holes by selecting design variables 

to the element thickness from 0.1mm to 1.0mm. Although the 

solution could not be obtained, it was unclear why it could not 

be obtained. The cause was not only clarified in section 2.2 by 

referring to the elastic and kinetic energy density distributions 

of eigen modes in question that are the key items of the pro-

posed method but also generated a problem that converged 

from a problem that did not converge. It was also shown that it 

is difficult to carry this traditional method out to actual design 

even though the problem converged. 

So in section 3.1, it is applied the new method so called 

IEDT change method to the problem that can be applied with 

the traditional method in section 2.3 and show that the pro-

posed method is much more efficient than the traditional 

method. Because with the traditional topology optimization, 

the study proceeds with the topology of the current structure 

as it is and after the optimization analysis, topology is 

changed. Therefore, the existence range of the solution with 

the traditional method is supposed to be limited. Here IEDT 

change method is further considered. A representative feature 

of vibration phenomena is that even if the same location is 

reinforced, whether each eigen frequency goes up or down 

depends on the level f reinforcement. Although the target 

eigen frequency does not change even if it is reinforced or 

installed holes on the place where both numerical values in 

Ws and Wk are low, the order of the numerical values in Ws 

and Wk may change if it is reinforced or made holes on the 

place where both numerical values in Ws and Wk are large. 

With the traditional topology optimization analysis, the op-

timal value is found in the current phase state so that it is 

fallen into a local optimum which is influenced strongly by 

the status of initial Ws and Wk. so that with the traditional 

method, it is difficult to follow the feature of vibration phe-

nomena. And so, it is very difficult to solve the dynamic 

problem with the traditional method. From such a thing, it is a 

good chance that the problem in section 2.1 that cannot be 

solved with the traditional method can be solved with the 

IEDT change method, that is shown in section 3.2. Moreover, 

achieving the task with reinforcement alone is shown in sec-

tion 3.3 with the IEDT change method by taking into con-

sideration that the order of the numbers on Ws and Wk will 

change. 

3.1. Control of Eigen Frequencies by IEDT 

Change Method 

Here the IEDT change method is applied to the same item 

as shown in section 2.3 which includes reinforcement. As 

shown in step 1 of Figure 5, holes 180mm long and 10mm 

wide are installed on the spring part of 2
nd

 eigen mode to 

decrease the 2
nd

 eigen frequency. The red circle parts are 

places with large numbers on Ws where the numbers on Wk 

are not large. 
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Figure 5. Results by interactive energy density topology change method: in step 1, holes are made on the red circle parts of 2nd eigen mode 

strain energy density distribution to decrease the 2nd eigen frequency. Reinforcements are provided on the red circle parts of 3rd eigen mode 

strain energy density distribution to raise the 3rd eigen frequency. As the result, eigen frequencies (1st, 2nd, 3rd, 4th) = (11.93 Hz, 22.31 Hz, 

39.06 Hz, 41.13 Hz). 2nd eigen frequency reaches the target but 3rd one does not yet reach the goal. In step 2, holes are made. As the result, 

eigen frequencies (1st, 2nd, 3rd, 4th) = (11.62 Hz, 22.64 Hz, 40.66 Hz, 46.00 Hz). It reaches the goal. 

As far as the 3
rd

 eigen frequency, it is given up for the 

reasons mentioned above to raise the 3
rd

 eigen frequency by 

setting holes on the mass part. It is aimed to increase the 3
rd

 

one by raising the thickness of the rectangular area 60mm 

long and 80mm wide circled in red to be doubled to 2.0mm in 

step 1 of Figure 5. After the modifications corresponding to 

the above 2
nd

 and 3rd orders, (1
st
, 2

nd
, 3

rd
, 4

th
) eigen frequen-

cies become (11.30 Hz, 22.31Hz, 39.06 Hz, 41.13 Hz), that is, 

the 2
nd

 reaches the goal but the 3
rd

 does not reach to 40Hz 

although it is higher than the initial one. If it is displayed the 

energy densities of the 3
rd

 eigen mode again in this state, it 

becomes step 2 in Figure 5. There are no noticeable spring 

parts with high strain energy density distribution. For it, there 

are noticeable mass parts with high kinetic energy distribution 

on both left and right ends of the panel. These mass parts 

include the holes considered for the 2
nd

 eigenmode in step 1. 

Therefore, if new holes are made 180mm long and 10mm 

wide at this location, (1
st
, 2

nd
, 3

rd
, 4

th
) eigen frequencies be-

come (11.62 Hz, 22.64 Hz, 40.66 Hz, 46.00 Hz), that is, the 

goal was achieved with just two interactive operations. Here 

IEDT change method will be compared the calculation time 

with the traditional topology optimization method used in 

section 2.3. In both cases, the most time-consuming routine is 

the eigenvalue analysis. Eigenvalue analysis for the solution 

was performed 390 times in section 2.3 and on the other hand, 

eigenvalue analysis was performed only 2 times with this 

IEDT change method. Because the traditional method uses 

optimization routines, other calculation times are also longer 

with the traditional method. From the above, the calculation 

time with IEDT change method is significantly reduced to 

approximately 1/195. In addition to this traditional method, 

the following two routines are added. 1
st
 is to create holes 

below a certain threshold and the other is to reinforce areas 

above a certain threshold. In the proposed method, operations 

to determine where to make holes and where to reinforce from 

energy density distributions are included. But the CPU time 

Objective frequencies less than 25Hz more than 40 Hz Holes and 

reinforcements 

after steps 1,2. 

2nd and 3rd 

eigen 

frequencies 

 1st 2nd 3rd 4th 

Eigen frequencies (plate of 

Fig.2) 

12.99Hz 26.13Hz 38.71Hz 47.96Hz 

 

Mode 

    

S 

T 

E 

P 

1 

Holes are made 
on the spring to 
decrease 2nd 
eigen frequency. 
Reinforcements 
are made on the 
spring to raise 3rd  

eigen frequency. 

 

Ws      

 

 

2nd:22.31 Hz 

3rd:38.71 Hz 

after step1 

Wk     

Eigen frequencies (after step1) 11.93Hz 22.31Hz 39.06Hz 41.13Hz 

S 

T 

E 

P 

2 

Holes are made 
on the mass to 
raise the 3rd 
eigen frequency. 

 

Ws      

 

 

2nd:22.64Hz 

3rd:40.66Hz 

after step2 

Wk     

Eigen frequencies 11.62Hz 22.64Hz 40.66Hz 46.00Hz 
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for these operations is shorter than one eigen analysis. And so 

with this model, the proposed method can obtain a solution 

with a significant time reduction of 1/150 or more. 

 
Figure 6. The achieved flow by interactive density topology change method to move all the eigen frequencies out of the danger frequency range 

with only 3 iterations. This has been achieved with just a set of holes which was not achieved by the traditional topology optimization method in 

2·1. 

3.2. Further Consideration 1 of IEDT Change 

Method - Consideration Based only on Hole 

Installation 

In this section, it is started from the flat plate state shown in 

Figure 1. The aim is to move all eigen frequencies out of the 

danger frequency band from 25Hz to 40Hz by simply in-

stalling holes. This was tried in section 2.1 with the traditional 

method but failed. In step 1 of Figure 6, it is shown the energy 

density distributions of the 2
nd

 and 3
rd

 eigenmodes of the flat 

plate in Figure 1. Again, Ws is strain energy density distribu-

tion and Wk indicates kinetic density distribution. Although 

where the numbers on Ws are large, the numbers on Wk are 

often also large, if you make holes where the numbers on Ws 

are larger than the numbers on Wk., the eigen frequency will 

decrease. Although this goes against the purpose of increasing 

the 3
rd

 eigen frequency, let’s make holes 40 mm length and 

60 mm width in the part circled in red on Ws. Its shape is 

shown in the right end column. As a result, the 2
nd

 eigen fre-

quency becomes 25.70Hz and the 3
rd

 one decreases to 

36.65Hz as predicted. From energy density distributions 

shown in Step 2 of Figure 6 of the 3
rd

 eigen mode after step 1,  
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it can be seen a large kinetic energy density in the area circled 

in red. Here, the numbers of the strain energy density are also 

large but the numbers of kinetic density are larger than the 

ones of strain energy density. Therefore, by creating a hole 

here, it can be expected that the eigen frequency will increase. 

The hole is installed 100mm long and 60mm width, that is, the 

hole size is increased only in the length direction without 

change the width as shown in step 2 right end of Figure 6. As 

the result, the 3
rd

 eigen frequency increases to 38.190 Hz as 

expected but it does not reach to 40Hz. This hole is also the 

spring part of the 2
nd

 eigen mode and so the 2
nd

 eigen fre-

quency decreases to 23.86 Hz with this hole. It is shown in 

step 3 of Figure 6 the energy density distributions in this state. 

There is a remarkable mass part on the red circle of the 3
rd

 

kinetic energy density distribution where the numbers on Ws 

are also large. But the numbers on Wk are larger than the ones 

on Ws and so by leaving the length direction of the hole as 

100mm and increasing the width direction of the hole to 160 

mm, the 3
rd

 eigen frequency becomes to 40.081 Hz that 

reaches the goal. The final shape is shown in step 3 right end 

of Figure 6. As the width of the hole for the 3
rd

 eigen fre-

quency increases from step 1 to step 3, this hole part includes 

the spring part of the 2
nd

 eigen frequency which means that 

increasing the hole size for the 3
rd

 eigen frequency comes 

down to create a hole on the spring part of the 2
nd

 eigen fre-

quency. This means the 2
nd

 eigen frequency also decreases as 

desired. As above, (1
st
, 2

nd
, 3

rd
, 4

th
) eigen frequencies become 

(12.49 Hz, 21.81 Hz, 40.08 Hz, 42.32 Hz), that is, it can be 

controlled so that there are no eigen frequencies within the 

danger frequency band with the proposed method by only 

setting halls. While change topology, the proposed method 

searches a solution which cannot be handled using traditional 

method because the solution can only be handled if the 

numbers on Ws and Wk are reversed depending on the size of 

the hole and reinforcement which are specific to vibration 

problems. As above, it could be confirmed that this proposed 

method can get a solution which cannot be solved with the 

traditional methods. 

3.3. Further Consideration 2 of IEDT Change 

Method- Consideration Based only on  

Reinforcement 

In this section, it is considered whether the desired result 

can be obtained with reinforcement alone. Ws and Wk at start 

point are shown in step 1 of Figure 7. First, the red circle part 

on Ws of the 3
rd

 eigen mode is a spring part and so the 3
rd

 

eigen frequency is expected to increase above the current 

eigen frequency 38.77HHz by reinforcing this part. It is re-

inforced the plate thickness from 1.0mm to 2.0mm on red 

circle part. On this part, both of the numbers on Ws and Wk of 

the 2
nd

 eigen mode are low and so this reinforcement does not 

affect to 2
nd

 eigen frequency value. If the numbers on Ws 

and Wk of 2
nd

 eigen mode in step 1 are compared, the num-

bers on Ws are larger than the ones on Wk in the red circle 

part on Wk. Therefore, this part is considered to be spring 

part. So, if reinforcement is performed on this part, the 2
nd

 

eigen frequency is supposed to raise. If it is performed the 

plate thickness from 1.0mm to 2.0mm in the red circle part of 

the 2
nd

 eigen mode in addition to 2.0mm reinforcement in the 

red circle part of the 3
rd

 eigen mode, its shape looks like the 

one on the right and both of the 2
nd

 and the 3
rd

 eigen fre-

quencies increase to 28.52 Hz and to 44.00 Hz respectively as 

predicted, that is, the 3
rd

 eigen frequency reaches to the goal. 

Therefore, from here, leaving the 3
rd

 reinforcement as is, it is 

tried to find the design specification such as the 2
nd

 eigen 

frequency moves out of the danger frequency range. Con-

firming Ws and Wk of the 2
nd

 eigen mode in step 2 of Figure 

7 which are generated after step 1, the numbers on Wk are 

superior to the ones on Ws, that means this red circle part 

changes to mass part of the 2
nd

 eigen mode. So, when rein-

forcement is done from plate thickness 2mm to 3mm, the 2
nd

 

eigen frequency decreases as predicted to 27.33Hz. Because 

both of the numbers on Wk and Ws of the 3
rd

 eigen mode are 

small in this red circle on Wk of the 2
nd

 eigen mode, the 3
rd

 

eigen frequency remains almost unchanged as predicted at 

44.12Hz with the reinforcement in the red circle of the 2
nd

 

eigen mode. By confirming Ws and Wk of the 2
nd

 eigen 

mode in step 3 of Figure 7 that are the energy density distri-

butions after modifications in step 2, the numbers on Wk are 

still greater than the ones on Ws. Therefore, because this red 

circle part is still mass part, the 2
nd

 eigen frequency will de-

crease if the plate thickness is 3mm or more after reinforce-

ment in this part. The 2
nd

 and 3
rd

 eigen frequencies are 

26.03Hz and 43.91Hz if the plate thickness is 4.0mm after 

reinforcement and they are 24.84Hz and 43.55Hz if the plate 

thickness is 5.0mm after reinforcement in this part. As pre-

dicted, the 2
nd

 eigen frequency decreases and the 3
rd

 one re-

mains almost unchanged. This red circle part was a spring 

part of the 2
nd

 eigen mode but this part changed to a mass 

part after the reinforcement in step 1. After that the mass part 

continued with more reinforcement and so as reinforcement 

in this part increases further, the 2
nd

 eigen frequency de-

creases. Although the figures of Ws and Wk are omitted here 

after 5.0mm reinforcement in this part in step 3, the 2
nd

 eigen 

frequency will decrease more if the plate thickness is greater 

than 5.0mm after reinforcement, no more attempts will be 

made here. The 1
st
 and 4

th
 eigen frequencies are 13.28Hz and 

49.53Hz, that is, all eigen frequencies are out of the danger 

frequency band. That’s all, the final shape is shown in step 3 

right end with right and left reinforcements 90mm long, 

40mm width and thickness 5mm for the 2
nd

 eigen frequency 

in addition to the reinforcement with upper and loWEr with 

long 60mm, width 80mm and thickness 2.0mm for the 3
rd

 

eigen frequency referring to Ws and Wk interactively. 

 

http://www.sciencepg.com/journal/ijmea


International Journal of Mechanical Engineering and Applications http://www.sciencepg.com/journal/ijmea 

 

45 

 
Figure 7. The achieved flow by interactive density topology change method to move all the eigen frequencies out of the danger frequency range 

with only 4 iterations. This has been achieved with just a set of reinforcements. 

4. Minimization of Frequency Response 

Integral Value in Danger  

Frequency Band 

It was clarified that this proposed IEDT change method can 

handle all three shapes such as with only holes, with only 

reinforcements and with both of holes and reinforcements for 

changing topology. By the way, purpose of setting danger 

frequency band is to eliminate significant local maxima and to 

reduce the integral value of the response value by frequency in 

this band for which only optimization analysis has been used 

[18-20]. In this chapter, It will be considered how much IEDT 

change method can contribute to these two issues. 

4.1. Assignment Settings 

The flat plate in Figure 1 is considered to be a shipping box. 

It is supposed it is simply supported on the floor of a car. 

Frequency response diagram of point A in Figure 1 is shown 

in Figure 8 under simple support all around applied by the 

same load value in the z direction to all nodes other than the 

boundary points. Here, damping value is 0.01. Looking at the 

Figure 8, when the frequency band of danger is supposed to 

be from 25 Hz to 40 Hz, even if the proposed method is used, 

the effect is unknown because there are no large peaks from 

25 Hz to 40Hz. 

There is a large peak in the 1
st
 eigen frequency and so it is 

confirmed the effectiveness of the proposed IEDT change 
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method by considering that from 5Hz to 15Hz as the fre-

quency band of danger. For this purpose, it is tried to move 

the 1
st 

eigen frequency to 15Hz or higher.

  
(a)                                                             (b) 

Figure 8. Displacement-frequency curve of point A on the plate in Figure 1.; (a): frequency range(0Hz-100Hz), (b): frequency range 

(5Hz-15Hz).  

 
Figure 9. Reinforcement specifications based on Ws and    at each step and the 1st eigen frequency after reinforcement. 

4.2. Consideration Regarding Response Integral 

Value Reduction Effect with IEDT Change 

Method 

So first, it is tried to move the 1
st
 eigen frequency to 15Hz 

or higher by using IEDT change method. The desired result is 

obtained after 4 interactions as shown in Figure 9. Further-

more, after one repetition, the 1
st
 eigen frequency increases to 

18.0Hz. It is shown in Table 1 the integral value from 5Hz to 

15Hz at each step. Because the 1
st
 eigen frequency is lower 

than 15Hz after step 3, the integral values from step 1 to step 

3 are all larger than the current integral value. But after step 4, 

the 1
st
 eigen frequency becomes higher than 15Hz as shown in 

Figure 10 and thanks to that, the integral value after step 4 is 

much smaller than the current value and the minimum optimal 

value of its integral value. Furthermore, after step 5, the 1
st
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eigen frequency becomes 18 Hz. As a result, the integral value 

after step 5 drops dramatically as shown in Table 1. As de-

scribed above, this IEDT change method has been shown to 

be extremely effective in both lowering the maximum value 

within the danger frequency band and lowering the integral 

value. In addition, analysis using the finite element method 

and optimization analysis using the linear approximation 

method [16] are due to COMSOL Multiphysics 5.5 [17]. The 

optimization analysis is performed such as (1) objective 

function is integral value W(i), i is the number of repetitions. 

(2) design variables are each thickness t (1mm t 10mm) of 

80 elements that do not touch the border. (3) stop condition is 

satisfaction of convergence condition regarding integral value 

such as |           |/W(n)  0.01 or the number of 

repetitions is 1,000. Here, W(n), W(n-1) are each the nth, 

(n-1)th integral value. As shown the convergence history in 

Figure 11, it is converged in 244 times. The optimal value in 

Table 1 is the convergence value after 244 repetitions. 

  
(a)                                                         (b) 

Figure 10. Displacement-frequency curve of point A on the plate in Figure 1 after step 4.; (a): frequency range (0Hz-100Hz), (b): frequency 

range (5Hz-15Hz). 

 
Figure 11. Convergence history. 
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Table 1. Comparison of integral values obtained with IEDT change method and with optimization analysis for minimum objective value. 

 Integral value 1st eigen frequency Weight 

Plate in Figure 1 0.27964 13.0Hz 0.032369kg 

After optimization 0.26322 13.0Hz 0.034085kg 

Step1  0.53155 13.0Hz 0.033448kg 

Step2 0.47889 13.2Hz 0.034527kg 

Step3 0.38763 13.9Hz 0.035606kg 

Step4 0.11831 16.4Hz 0.037764kg 

Step5 0.07436 18.0Hz 0.039922kg 

 

What it would be liked to focus on here is that with the 

IEDE change method, the objective value can be obtained 

after 6 eigen value analysis with a much shorter CPU than 

with conventional optimal analysis where 244 optimal analy-

sis are necessary. As the model grows, this difference be-

comes even larger. 

5. Conclusion 

At the design site, there is a desire to move multiple eigen 

frequencies at the same time. 

Topology optimization method is considered to be the most 

effective method to meet this request and so there are already 

many related studies. Here, it was also tried to the topology 

density method with using eigen value index to control mul-

tiple eigen frequencies simultaneously. However, there is no 

way to determine whether the problem can be converged in 

the first place and so after trial and error, it was shown an 

example that converged and an example that did not converge. 

Moreover, even if convergence is achieved, the structural 

shape obtained by the topology optimization analysis will be 

uneven and so if left as is, manufacturing costs would be 

extremely high. Therefore, as an actual design specification, 

holes are often made below a certain thickness from the cur-

rent structure. As the result, it was shown that structure may 

deviate from the goal again. Therefore, returning to the origin 

of vibration, each eigen frequency is determined by equiva-

lent stiffness and equivalent mass, the IEDT change method 

was developed. With traditional topology optimization anal-

ysis, the optimized solution is obtained with the design vari-

ables distributed in that state while maintaining the current 

topology. On the other hand, with the proposed IEDT change 

method the solution can be found interactively while change 

the topology by predicting the direction of change of each 

eigen frequency with referring to strain and kinematic energy 

density distributions. This means that with the proposed 

method, it was shown that the desired solution could be ob-

tained more reliably in a short time from a wider solution 

space. It was also shown that the new method can also be used 

for preprocessing such as determining the appropriateness of 

task settings with traditional methods. 

Lastly, it was shown that this IEDT change method is not 

only effective to reduce the peak response value but also much 

more effective in reducing integral value of response value 

within band than the traditional optimization analysis for 

minimization of the integral value. 
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